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Research Article

Substantial empirical evidence links cognitive ability to 
mortality risk—a relation that persists across decades of 
the life span (e.g., Anstey, Mack, & von Sanden, 2006; 
Whalley & Deary, 2001). Age-related decrements in cer-
tain abilities, such as processing speed, may be particu-
larly informative of increased mortality risk (Aichele, 
Rabbitt, & Ghisletta, 2015; Ghisletta, McArdle, & Linden-
berger, 2006). However, age alone does not explain dif-
ferences in cognitive decline or, by extension, associations 
between cognitive decline and survival (Spiro & Brady, 
2011). Especially in older populations, health and well-
being depend on complex interactions between physio-
logical conditions, functional abilities, psychological 
attributes, and social support (Ocampo, 2010). Relations 
between mortality risk and cognitive abilities measured 
in youth similarly implicate other variables, such as socio-
economic advantage, education, and nervous-system 
constitution (Deary, 2008).

Therefore, in evaluating cognition-survival associa-
tions, it is essential to also consider demographic, lifestyle, 

and health variables. For example, different medical con-
ditions (e.g., aging of the central nervous system, meta-
bolic disease, or compromised physical mobility) may 
affect both cognitive function and mortality risk. Anstey 
et al. (2006) reviewed 47 longitudinal studies of cognition 
and mortality risk in patient samples of stroke, cancer, 
and coronary heart disease. The authors concluded that 
reciprocal relations between cognition, lifestyle, and 
health variables indicated multiple causal pathways linked 
to mortality risk. Evidence of intertwined relations among 
diverse mortality risk factors prompts questions about dif-
ferences in magnitudes of influence. Specifically, are cog-
nitive variables stronger than other indicators of mortality 
risk? And how might cognitive variables combine with 
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Abstract
In a 29-year study of 6,203 individuals ranging in age from 41 to 96 years at initial assessment, we evaluated the 
relative and combined influence of 65 mortality risk factors, which included sociodemographic variables, lifestyle 
attributes, medical indices, and multiple cognitive abilities. Reductions in mortality risk were most associated with 
higher self-rated health, female gender, fewer years as a smoker, and smaller decrements in processing speed with age. 
Thus, two psychological variables—subjective health status and processing speed—were among the top predictors of 
survival. We suggest that these psychological attributes, unlike risk factors that are more narrowly defined, reflect (and 
are influenced by) a broad range of health-related behaviors and characteristics. Information about these attributes 
can be obtained with relatively little effort or cost and—given the tractability of these measures in different cultural 
contexts—may prove expedient for prevention, diagnosis, and treatment of conditions related to increased mortality 
risk in diverse human populations.
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demographic, health, and lifestyle risk factors to maxi-
mize predictive efficacy?

Few studies have directly addressed these questions. 
Batty, Shipley, Gale, Mortensen, and Deary (2008) com-
pared general intelligence (IQ) and established risk factors 
(e.g., chronological age, socioeconomic status, smoking, 
pulse rate, blood glucose and cholesterol levels) as predic-
tors of 15-year survival rates in a group of 4,166 male U.S. 
veterans of the Vietnam War. Across analyses conducted 
independently by predictor and adjusted only for chrono-
logical age, IQ was more strongly linked to survival rates 
than were most demographic and health indices. However, 
when all risk factors were included in a single survival 
model (i.e., predictive effects were mutually adjusted), the 
influence of IQ was eclipsed by family income, smoking, 
pulse rate, and high-density lipoprotein cholesterol. In a 
second study, Roberts, Der, Deary, and Batty (2009) assessed 
the relative influence of choice reaction time, psychological 
distress, lifestyle, and physical health variables on mortality 
risk in a sample of 5,606 Scottish men and women (age 
range = 18–94 years). In analyses conducted independently 
by predictor and adjusted for age, gender, and socioeco-
nomic status, choice reaction time was stronger than all 
other risk factors except for smoking and systolic blood 
pressure. However, there was no follow-up analysis to 
determine whether choice reaction time remained influen-
tial after mutual adjustment with other risk factors.

The literature currently lacks studies in which baseline 
levels and changes with age in multiple cognitive abili-
ties, lifestyle attributes, and health indices are included as 
joint predictors of mortality risk. Such a comprehensive 
examination is necessary to determine the degree to 
which specific cognitive variables influence mortality risk 
relative to a wide range of well-known risk factors—an 
important starting point in coming to better understand 
the pathways linking cognition and survival.

This was the aim of the present work, which stems 
from the Manchester Longitudinal Study of Cognition 
(MLSC)—an investigation of changes in cognition, life-
style, and health in 6,203 individuals (age range at initial 
assessment = 41–96 years; Rabbitt et al., 2004). MLSC data 
span a period of 29 years (i.e., from study inception in 
1983 to the most recent update of survival information in 
2012). Cognitive abilities were assessed on four occasions 
spaced at 4-year intervals. Previous MLSC analyses have 
examined relations between cognition and survival (see 
Aichele et al., 2015), but this is the first analysis of MLSC 
data to combine demographic, lifestyle, medical, and 
cognitive variables (65 in total) to predict mortality risk.

We used random-forest survival analysis (RFSA) to 
compare mortality risk factors. RFSA is a nonparametric 
statistical technique related to classification and regres-
sion trees (Breiman, 2001; Strobl, Malley, & Tutz, 2009). 
Regression trees recursively partition observations 
according to predictor or threshold criteria that best 

discriminate differences in an outcome (e.g., mortality 
risk). Thus, the root node of a regression tree represents 
the strongest predictor (and associated cut point) using 
all observations, whereas subsequent nodes represent 
the best predictors within nested, increasingly smaller 
subsamples of observations. RFSA extends this single-
tree approach (hence “forest”) by providing built-in 
cross-validation: Results are pooled across multiple trees, 
where each tree is derived from randomly sampled sub-
sets of observations and predictors.

RFSA has distinct advantages over traditional multi-
variate methods. First, because predictor selection occurs 
within a recursive branching structure, and because a 
given predictor can be reselected at multiple nodes 
in  that structure, RFSA estimation implicitly adjusts for 
all  possible linear, nonlinear, and higher-order inter
action effects between variables. Second, built-in cross- 
validation protects against multicollinearity (i.e., strongly 
overlapping predictive information) and model overfit 
(i.e., spurious variable selection). However, RFSA was not 
developed within a standard probabilistic framework. 
Therefore, we also examined a subset of the strongest 
risk predictors using Cox proportional hazards analysis 
(Cox PH; Cox, 1972)—which is better suited to interpre-
tation of effect sizes based on a known statistical distribu-
tion. This combined methodology thus allowed us to 
assess the relative importance of numerous, interrelated 
mortality risk factors and also to estimate effect sizes for 
the strongest predictors.

We hypothesized that metabolic pathways underlying 
both cognitive function and mortality risk would most 
strongly influence predictor-outcome relations. Specifi-
cally, we expected risk factors related to respiratory and 
cardiovascular health (e.g., symptoms such as blood 
pressure, chest pain, difficulty breathing) to be of pri-
mary importance. Of the cognitive variables, we previ-
ously found that processing-speed decrements were most 
indicative of increased mortality risk (Aichele et al., 2015). 
Processing-speed decrements have also been linked to 
declining cardiovascular health (Bosworth & Siegler, 
2002). Therefore, given overlapping predictive informa-
tion in processing speed and cardiovascular variables, we 
hypothesized that Cox PH analysis would favor cardio-
vascular health (the stronger risk factor)—whereas RFSA 
results would present a more balanced picture, with both 
processing speed and cardiovascular variables among the 
top predictors that we could consider.

Method

Participants

These analyses used data from MLSC participants who 
completed one or more cognitive assessments (N = 
6,203). Demographic variables were as follows: (a) 
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chronological age at induction into the study, (b) gender, 
(c) city of residence (Newcastle upon Tyne or Manches-
ter, United Kingdom), (d) study cohort by year of entry 
(1983–1993), (e) socioeconomic advantage (graded 
according to the Registrar General’s Scale of Occupa-
tional Categories; Office of Population Censuses and Sur-
veys, 1980), (f) marital status, (g) number of persons 
living in the home, and (h) number of children. Tobacco 
and alcohol use (i.e., current status, years of use, and 
units of alcohol consumed per day) were also recorded. 
These variables are summarized in Table 1.

Participants were recruited by advertisements placed 
in magazines or broadcast on television and radio (Rab-
bitt et  al., 2004). None had severe visual or auditory 
handicaps; those with mild, correctable sensory handi-
caps were assessed with their spectacles or hearing aids 
in place. Mortality information (dates and proximate 
causes for all deaths between 1983, when the study 
began, and August 2012, the most recent update) was 
obtained from a search of death certificates performed by 
Her Majesty’s General Registry Office.

Cognitive abilities

Our cognitive-performance variables were baseline levels 
(intercepts) and changes with age (linear slopes) in five 
domains of ability: crystallized intelligence, fluid intelli-
gence, verbal memory, visual memory, and processing 
speed. These variables were previously derived by aggre-
gating data from 15 cognitive tasks (three per domain) 
administered up to four times at 4-year intervals during a 
12-year period. Detailed descriptions of these tasks, task-
selection rationale, and corresponding testing procedures 
are provided in Rabbitt et al. (2004). Analyses by which 
we obtained domain-specific performance predictors 
(i.e., intercepts centered at age 70, slopes spanning par-
ticipant ages of 42–97 years) are described at length in 
Aichele et  al. (2015). Thus, we provide only a short 
description here.

Cognitive tasks were selected on the basis that they 
were appropriate for assessment of cognitive change in 
adult and older samples according to life-span develop-
mental theory (Baltes, Lindenberger, & Staudinger, 2006), 
were well-known and documented in the empirical lit-
erature, and could be administered by pencil and paper. 
Crystallized intelligence was measured by the Raven 
(1965) Mill Hill Vocabulary A and B (synonyms and word 
definitions) tests and by the Wechsler Adult Intelligence 
Scale–Revised vocabulary scale (Wechsler, 1986). Fluid 
intelligence was assessed by the Heim (1970) AH4-1 and 
AH4-2 tasks (logic, arithmetic, number series, and verbal 
and visuospatial object comparisons) and from the Cattell 
and Cattell (1960) Culture Fair Intelligence Test. Verbal 
memory was examined using measures of free verbal 

recall, cumulative verbal recall, and delayed verbal recall 
(three variations of a task in which participants recalled a 
series of six-letter nouns). Visuospatial memory was 
assessed with a picture-recognition task, a “memory for 
objects” task (recall of names and positions of line draw-
ings of easily nameable objects), and recall of shapes and 
their spatial locations. Processing speed was measured 
with a visual search task, the Savage (1984) alphabet-
coding task, and a semantic-reasoning task (Baddeley, 
Emslie, & Nimmo-Smith, 1992).

Within each cognitive domain, we used factor analytic 
methods to aggregate performance across tasks (i.e., as 
factor scores at each measurement occasion), and we 
used multilevel growth modeling to estimate levels 
(intercepts) and changes (linear slopes) in these factor 
scores. Thus, we obtained variables corresponding to 

Table 1.  Characteristics of the Sample (N = 6,203)

Variable Value

Age at induction into the 
study (years)

M = 64.7, range = 41.0–93.0

Deceased (n) 4,484 (72.3%)
Age at death (years) M = 83.5, range = 52.5–108.0
Women (n) 4,379 (70.6%)
Newcastle residents (n) 3,384 (54.5%)
Occupational class  

Professional 289 (4.7%)
Intermediate 1,961 (31.6%)
Skilled (nonmanual) 1,660 (26.8%)
Skilled (manual) 1,342 (21.6%)
Partly skilled 456 (7.4%)
Unskilled 52 (0.8%)
Unknown 443 (7.1%)

Marital status (n)  
Married 3,313 (53.4%)
Single 484 (7.8%)
Widowed (not remarried) 1,484 (23.9%)
Divorced (not remarried) 327 (5.3%)
Separated 66 (1.1%)
Unknown 529 (8.5%)

Number of persons in the 
home

M = 1.9, SD = 1.0

Number of children M = 1.9, SD = 1.4
Smokers (n) 1,006 (16.2%)
Time smoking (years) M = 17.1, SD = 18.3
Alcohol drinkers (n) 4,051 (65.3%)
Time drinking alcohol 
(years)

M = 29.4, SD = 18.0

Alcohol consumption (units/
day)

M = 2.0, SD = 1.7

Note: All information was obtained from participants at their induction 
into the study, except for death information, which was last updated 
in 2012 (see Method section). One unit of alcohol is equivalent to  
10 ml of pure alcohol.
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baseline performance level (centered at age 70 years, 
approximately the median participant age) and change 
in performance (spanning the range of participants’ ages 
at assessment, 42–97 years) for each cognitive domain. 
The statistical fit values for all models were good to 
excellent.

The resulting variables are summarized in Table 2. 
Note that estimates are given in standardized units scaled 
per decade (e.g., there is a −0.49-SD change in process-
ing speed per decade of life). On average, cognitive per-
formance decreased with age (negative linear slope) in 
all domains. This was most evident in verbal memory 
and, as predicted by life-span theories of cognitive devel-
opment (Lindenberger, 2001), least evident in crystallized 
intelligence. Between-person variation (random effects) 
in linear slopes was highest for verbal memory and pro-
cessing speed and lowest for crystallized intelligence and 
visual memory (see Aichele et al., 2015).

Daily-life measures

At recruitment and approximately 3 and 6 years after 
recruitment, participants provided subjective ratings of 
(a) their general health status, (b) the number of pre-
scribed medications currently taken, (c) information 
about sleep patterns (hours of sleep and times awoken 
each night), (d) number of hobbies, (e) amount of time 
spent (e.g., hours per month) in 14 different types of lei-
sure activity (e.g., housework, exercise, driving), (f) dif-
ficulty in performing 12 different daily-life activities (e.g., 
climbing stairs, preparing meals, traveling locally), and 
(g) number of weekly social interactions (casual contacts; 
short conversations with relatives, friends, or colleagues; 
and long conversations with relatives, friends, or 
colleagues).

As described in Sections S1 and S2 of the Supplemen-
tal Material available online, we used factor analysis to 
reduce the 26 variables subsumed by leisure activities 
and daily-life activities (see last paragraph) to three latent 
variables: Difficulty Performing Housework, Impaired 

Physical Mobility, and Leisure Activity. In total, then, 
we used 11 daily-life variables in our analyses. We used 
multilevel growth models (see Section S3 of the Supple-
mental Material) to derive individual scores of baseline 
performance (intercepts at age 70) and changes with age 
(linear slopes across participant ages at daily-life variable 
assessments, 41–95 years) in each of these attributes.

These scores are summarized in Table 3. On average, 
subjective health, sleep per night, and number of hobbies 
decreased with age (negative linear slopes). Use of pre-
scribed medications, Difficulty Performing Housework, 
and Leisure Activity increased with age. Given the rela-
tively older participant pool (mean age ≈ 70 years), 
increases in Leisure Activity may reflect decreased work 
commitments and reorientation of daily activities toward 
increased personal errands, social visitations, and light 
exercise. Between-person variation (random effects) in 
linear slopes was significant for five attributes: subjective 
health, use of prescribed medications, sleep per night, 
Difficulty Performing Housework, and Leisure Activity.

Cornell Medical Index

Starting in 1993 (10 years after study inception), partici-
pants completed the Cornell Medical Index (CMI;  
Brodman, Erdmann, & Wolff, 1949), which was thereafter 
administered on three separate occasions at 3- to 6-year 
intervals. The CMI assesses key medical and psychiatric 
data with minimal time and financial expense. This inven-
tory consists of detailed checklists of pathological symp-
toms (195 in total) categorized into 18 domains: Sections 
A through L relate to physical disorders, and sections M 
through R correspond to psychiatric or psychological 
problems. Note that data from CMI index D is here sub-
divided into D1: teeth and D2: gastrointestinal, liver.

In a previously published analysis of two subgroups of 
MLSC participants (n = 101, n = 88), Pendleton et  al. 
(2004) validated diagnostic outcomes that had been 
derived from CMI scores against corresponding diagnostic 
outcomes from structured medical assessments conducted 

Table 2.  Summary of Cognitive Performance

Variable 

Intercept (at age 70)
Linear slope 

(change/decade)

Mean 95% CI Mean 95% CI r(I,S) 

Crystallized Intelligence –0.02 [–0.04, 0.01] –0.08 [–0.09, –0.06] .65
Fluid Intelligence 0.03 [0.01, 0.06] –0.30 [–0.32, –0.28] .11
Verbal Memory 0.13 [0.10, 0.15] –0.66 [–0.68, –0.64] .24
Visual Memory 0.21 [0.19, 0.24] –0.55 [–0.56, –0.53] .79
Processing Speed 0.36 [0.33, 0.38] –0.49 [–0.50, –0.47] .32

Note: All estimates are in standardized units. r(I,S) = correlation between intercept and linear 
slope; 95% CI = 95% confidence interval.
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by two experienced physicians. The structured medi-
cal  assessments were based on a modified version of 
the SENIEUR protocol (Ligthart et al., 1984). The identi-
fied medical conditions included hypertension, diabetes,  
ischemic heart disease, stroke, myocardial infarction, epi-
lepsy, and Parkinson’s disease. Predictive accuracy of the 
CMI was found to be excellent, ranging from 89% to 99% 
across conditions.

We converted CMI scores at each measurement occa-
sion from sums (i.e., total positive symptoms within each 
category) to percentages (i.e., positive symptoms divided 
by total possible symptoms within a given category, mul-
tiplied by 100). We then estimated baseline performance 
(intercept at age 70) and change with age (across partici-
pant ages at CMI assessments, 47–98 years) in each CMI 
domain using multilevel growth models (see Section S3 
of the Supplemental Material).

Summary statistics for these variables are shown in 
Table 4. Increases in symptoms with age were observed 
in five specific areas: A: eyes and ears, C: cardiovascular, 
D1: teeth, I: fatigue, and J: frequency of illness. No age-
related increases were observed in symptoms related to 
“mood and feeling patterns” (CMI indices M–R). Inter-
cepts and linear slopes were strongly negatively corre-
lated for all CMI variables, indicative of baseline effects 
(i.e., individuals with higher overall health had “more 
room” to decline with age). Between-person variation 
(random effects) in linear slopes was significant for five 
indices: J: frequency of illness, L: addiction, O: anxiety, 
total physical symptoms (A–L), and total mood or feeling 
patterns (M–R).

Attrition and missing data

No stopping rule for data collection was defined a priori; 
rather, data were gathered at repeated assessments as 
permitted by available funding. Except for possible  
survival-status updates, data collection has now ceased. 
The number of participants, their average age, and the 
age range of participants at each assessment are shown 
in Table 5. Participant attrition because of death or drop-
out from the study appears to have been the primary 
source of missing data, indicated by rapidly declining 
numbers of participants across subsequent assessments. 
MLSC participants who voluntarily withdrew between 
1983 and 1994 were retrospectively identified as older, 
being from less advantaged socioeconomic groups, and 
having lower scores on all cognitive tests than individuals 
who continued to participate. In addition, participants 
first recruited in 1983 who died within the first 11 years 
of the study were found to perform relatively worse on 
all cognitive tests and to have elevated levels of depres-
sion relative to survivors (Rabbitt et al., 2004).

Nonignorable missingness as a result of attrition is a 
common occurrence in longitudinal, epidemiological 
studies (Diggle, Heagerty, Liang, & Zeger, 2002). Meth-
ods for handling missing data that exclude incomplete 
observations (e.g., list-wise deletion) are ill suited to 
such studies because outcomes based only on complete 
observations are likely to be biased toward healthier, 
higher-performing individuals. Therefore, to account for 
missing data (Schafer & Graham, 2002), we used multi-
ple imputation, which derives estimates for missing 

Table 3.  Summary of Daily-Life Measures

Intercept (at age 70)
Linear slope 

(change/decade)

Variable Mean 95% CI Mean 95% CI r(I,S) 

Subjective healtha,b 3.77 [3.66, 3.89] –0.20 [–0.39, –0.02] –.06
Prescribed medicationsb 1.75 [1.40, 2.10] 0.97 [0.16, 1.78] .34
Sleep (hours/night)b 6.69 [6.46, 6.92] –0.40 [–0.81, 0.01] .19
Awakenings (number/night) 1.80 [1.53, 2.07] — — —
Number of hobbies 4.13 [3.74, 4.51] –0.64 [–1.38, 0.01] –.17
Difficulty Performing Houseworkb,c –0.12 [–0.27, 0.03] 0.65 [0.37, 0.92] .39
Impaired Physical Mobilityc –0.02 [–0.52, 0.47] 0.62 [–0.18, 1.42] .14
Leisure Activityb,c –0.22 [–0.41, –0.02] 0.79 [0.21, 1.38] .50
Social interactions (number/week)  

Casual contacts 61.27 [48.98, 73.56] — — —
Short conversations 41.93 [26.15, 57.71] — — —
Long conversations 19.75 [14.66, 24.83] — — —

Note: A dash (—) indicates that linear slope did not improve model fit and hence was excluded in the model 
from which parameter estimates were obtained. r(I,S) = correlation between intercept and linear slope; 95% 
CI = 95% confidence interval.
aEstimates are on a scale from 1 (worst) to 5 (best). bFor these variables, the random effects for linear slopes 
were significant. cFor these variables, standardized estimates are reported.
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values on the basis of individuals’ observed data and 
adds random noise to preserve a statistically reasonable 
degree of variability. To reduce bias in the estimates of 
missing values, we took an inclusive approach as pro-
posed by Spratt et al. (2010): All predictor and outcome 
variables were included in data imputation. We used the 
mice package (Van Buuren & Groothuis-Oudshoorn, 
2011) for the R software environment (R Development 
Core Team, 2014) to impute 30 complete data sets using 
all available information from all variables included in 
the current study. Subsequent analyses were conducted 
independently for each of these data sets, and results 
were then aggregated across these analyses to derive 
final summary statistics, as recommended by Rubin 
(1987).

Survival analyses

Our aims were to examine the relative and combined 
influence of multiple predictors of mortality risk. In 

total, the set of predictors included 65 variables: demo-
graphic attributes (8), tobacco and alcohol use (5), 
intercepts and slopes of cognitive abilities (10), inter-
cepts and slopes of daily-life measures (16), and inter-
cepts and slopes for each of the pathological domains 
in the CMI (26). Survival analyses were conducted inde-
pendently for each of the 30 imputed data sets (see 
Method), and results were combined by standard proce-
dures (Rubin, 1987). Individuals for whom survival 
information was missing before data imputation (n = 
245, or 4% of participants) were removed from the sur-
vival analyses. For longitudinal variables (cognitive per-
formance, daily-life measures, CMI indices), linear 
slopes were included as predictors in survival models 
only when corresponding estimates of between-person 
variation (random effects) were significant. Two sur-
vival analyses were conducted: RFSA and Cox PH. The 
data were randomly divided into two subsamples so 
that each of the survival analyses could be conducted 
independently.

Table 4.  Summary of Pathological Symptoms

Intercept (at age 70)
Linear slope 

(change/decade)

Domain Mean 95% CI Mean 95% CI r(I,S) 

Physical conditions  
A: eyes, ears 23.32 [20.45, 26.19] 3.98 [1.25, 6.72] –.65
B: nose, throat, respiration 13.34 [11.78, 14.90] 0.63 [–0.86, 2.12] –.72
C: cardiovascular 18.44 [16.46, 20.42] 3.84 [1.46, 6.22] –.69
D1: teeth 19.44 [16.98, 21.89] 2.63 [–0.02, 5.28] –.67
D2: gastrointestinal, liver 12.68 [11.07, 14.30] 0.67 [–1.44, 2.78] –.70
E: musculoskeletal 14.92 [11.88, 17.97] 2.40 [–0.99, 5.78] –.68
F: skin 10.90 [8.29, 13.52] 0.59 [–2.13, 3.32] –.72
G: nervous system 6.89 [5.90, 7.87] 0.11 [–0.99, 1.20] –.73
H: reproductive, urinary 21.94 [18.58, 25.30] –1.88 [–5.38, 1.63] –.71
I: fatigue 10.71 [8.76, 12.57] 4.82 [1.77, 7.86] –.69
J: frequency of illnessa 1.90 [0.81, 2.98] 2.60 [0.96, 4.23] –.66
K: miscellaneous 10.61 [9.03, 12.19] –0.12 [–1.80, 1.56] –.69
L: addictiona 16.86 [14.64, 19.07] –1.75 [–4.25, 0.75] –.74

Totala 13.16 [12.42, 13.90] 1.17 [0.41, 1.92] –.75
Mood and feeling patterns  

M: inadequacy 11.40 [8.99, 13.80] 1.92 [–0.21, 4.05] –.69
N: depression 6.49 [3.62, 9.35] 2.18 [–1.17, 5.52] –.66
O: anxietya 9.45 [6.45, 12.45] 0.43 [–2.13, 2.99] –.73
P: sensitivity 17.73 [8.47, 16.64] –0.35 [–5.36, 4.66] –.75
Q: anger 12.55 [8.46, 13.66] –0.02 [–4.02, 3.98] –.73
R: tension 11.06 [12.42, 13.90] 0.81 [–1.87, 3.49] –.71

Totala 11.29 [9.45, 13.12] 0.89 [–0.99, 2.77] –.77

Note: Participants’ scores for Cornell Medical Index (CMI) symptoms were derived as percentages within 
each CMI domain (e.g., number of observed fatigue symptoms divided by total number of fatigue 
symptoms). Thus, the estimates in this table are scaled as percentage of manifest symptoms at age 
70 (intercept) and as change in percentage of manifest symptoms per decade (linear slope). r(I,S) = 
correlation between intercept and linear slope; 95% CI = 95% confidence interval.
aFor these variables, the random effects for linear slopes were significant.
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RFSA.  A survival tree is the result of a nonparametric 
regression method that recursively partitions observa-
tions by sequences of decision criteria that maximally 
discriminate mortality risk within increasingly smaller 
nested subsets of observations. The resulting tree is thus 
composed of bifurcating nodes (predictor variables and 
corresponding split values) and branches (pathways link-
ing nodes). Nodes closer to the root (start point) of the 
tree represent variables with stronger predictive influ-
ence (i.e., they are effective within a larger sample of 
observations).

The branching, recursive algorithm used in regression 
trees makes them more effective than traditional step-
wise approaches in accounting for all possible linear 
and nonlinear associations and higher-order interactions 

among covariates and in estimating predictor importance 
(Strobl et al., 2009). Indeed, a standard regression model 
tests only the predictors (and possible interactions) 
explicitly specified by the analyst, whereas the regression 
tree algorithm tests all possible interactions (linear and 
nonlinear) between independent variables.

However, as noted by Ghisletta, Aichele, and Rabbitt 
(2014), a single survival tree may also overfit the avail-
able data: That is, observations may be classified with 
respect not only to their survival information (signal) but 
also as a function of sampled randomness (noise). Thus, 
Breiman (2001) proposed the use of random forests in 
which regression trees are repeatedly generated (a) from 
randomly sampled subsets of observations and (b) with 
predictors at a given node selected from a randomly 
sampled subset of the total variables. This procedure 
provides a built-in method for cross-validation (using 
bootstrapping or bagging) and is robust to the problems 
of overfitting to the sample and overfitting to the 
variables.

The relative influence of each predictor (i.e., variable 
importance) in a random forest can be derived by aggre-
gating estimates of predictor-outcome strength across all 
individual trees. Permutation accuracy, a statistic fre-
quently used for this purpose, is a measure of the differ-
ence in prediction accuracy before and after a variable is 
randomly permuted (to break its association with the 
outcome) averaged over all trees (Strobl et al., 2009). In 
other words, this method compares observed and ran-
domized associations between predictors and the given 
outcome across multiple trees to ascertain change in pre-
dictive accuracy.

We used the randomForestSRC package (Ishwaran 
&  Kogalur, 2013) within the R software environment  
(R Development Core Team, 2014) to examine the rela-
tive influence on mortality risk of the 65 predictor vari-
ables. We generated 160 trees per random forest. We 
estimated predictors’ relative importance as a percentage 
of the maximum observed permutation accuracy across 
predictors. Results obtained from the 30 imputed data 
sets were then aggregated (Rubin, 1987).

Cox PH survival models.  We also conducted Cox PH, 
a more conventional survival analysis (Cox, 1972), incor-
porating data from only the most important predictor 
variables (i.e., those with estimated RFSA relative impor-
tance ≥ .25). Here we examined the predictive influence 
of each of these variables via likelihood-ratio tests, or 
change in model fit (Δχ2) per change in degrees of free-
dom. Likelihood-ratio tests were applied sequentially, 
starting with the full model (i.e., all predictors included) 
and removing variables in descending order according to 
their relative importance, as determined from the RFSA. 
We calculated standardized effect-size estimates for each 

Table 5.  Sample for Each Measure and Assessment

Measure and statistic 

Assessment

1 2 3 4

Crystallized Intelligence  
n 6,181 3,875 2,190 1,113
Mean age (years) 65.7 69.2 72.5 75.5
Age range (years) 43–93 47–92 52–93 54–97

Fluid Intelligence  
n 6,172 3,874 2,188 1,112
Mean age (years) 65.7 69.2 72.5 75.5
Age range (years) 43–93 47–92 52–93 54–97

Verbal Memory  
n 5,510 3,565 1,861 1,067
Mean age (years) 65.8 69.1 72.5 75.5
Age range (years) 43–93 47–92 52–93 54–97

Visual Memory  
n 5,510 3,564 1,858 1,065
Mean age (years) 66.5 70.1 73.6 75.7
Age range (years) 43–95 47–92 52–94 54–97

Processing Speed  
n 4,288 2,435 1,184 487
Mean age (years) 67.7 72.5 75.8 77.1
Age range (years) 42–96 47–95 51–96 54–95

Daily-life measures  
n 5,683 3,000 580 —
Mean age (years) 65.1 67.6 75.7 —
Age range (years) 41–95 51–92 53–93 —

Cornell Medical Index  
n 2,514 1,821 605 748
Mean age (years) 71.9 75.4 76.3 80.8
Age range (years) 47–94 51–97 54–97 68–98

Note: The timing of assessments differed by measure (e.g., for the first 
study cohort, the first assessment of daily-life measures occurred in 
1983 and 1984, whereas the first administration of the Cornell Medical 
Index occurred in 1993). Thus, differences in n across measures (i.e., 
within columns, across rows) reflect timing-dependent differences in 
the availability of participants. Testing intervals for the measures are 
described in the corresponding Method subsections.
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predictor (i.e., percentage change in mortality risk per 
standard unit change in the given predictor). This analy-
sis was carried out using the survival package (Therneau, 
2014) in the R software environment.

Results

RFSA

Predictive error rates for the random forests converged to 
minimum values (mean squared error ranging from 0.35 
to 0.36) after approximately 150 trees had been gener-
ated.1 Predictors with estimated relative importance (Irel) 
greater than .25 are listed in Table 6. Thirteen of the origi-
nal 65 predictors met this criterion. Of these variables, 
intercept of subjective health (Irel = .77) was the strongest 
predictor, followed by gender (Irel = .76), years smoking 
(Irel = .68), and linear slope of Processing Speed (Irel = 
.59). Note that relative importance of the strongest pre-
dictor would be expected to equal 1.00 in a single RFSA, 
but because we aggregated results from 30 analyses (i.e., 
conducted across the multiply imputed data sets), the 
estimated maximum relative importance after aggrega-
tion was .77 (i.e., for subjective health), which indicates 

that subjective health was the top predictor in most but 
not all of the imputed data sets.

Of the remaining demographic and smoking/alcohol 
variables, only age at induction into the study and current 
smoking status made the list of top predictors. Other cog-
nitive variables with relative importance of at least .25 
were the linear slope of Fluid Intelligence and the inter-
cept of Processing Speed. Verbal Memory, Visual Memory, 
and Crystallized Intelligence were of low importance in 
predicting mortality risk in the presence of lifestyle and 
medical risk factors. Other influential daily-life measures 
and CMI predictors included the linear slope of frequency 
of illness, the intercept and the linear slope of Difficulty 
Performing Housework, the intercept of Leisure Activity, 
and the intercept of number of prescribed medications.

Cox PH survival models

Cox PH outcomes are also shown in Table 6. Results 
were mostly consistent with those from the RFSA; how-
ever, only five predictors produced both notable changes 
in model fit (Δχ2) and significant change in hazard ratios 
(i.e., 95% confidence intervals for percentage change in 
hazard ratio that did not include 0). These variables, in 

Table 6.  Comparative Influence of the Predictors of Mortality Risk

RFSA: relative 
importance

Cox PH

Change in hazard ratio 

Variable  Mean 95% CI Δχ2
Mean 

percentage 95% CI

Intercept of subjective healtha .77 [.69, .85] 144 –16.2 [–28.7, –3.7]
Gender (female)a .76 [.68, .84] 76 –33.0 [–44.4, –21.6]
Years smokinga .68 [.61, .75] 36 11.4 [4.9, 17.9]
Linear slope of Processing Speeda .59 [.51, .67] 66 –10.9 [–16.8, –5.0]
Linear slope of J: frequency of illness (CMI) .42 [.30, .54] 21 7.7 [–2.7, 18.1]
Intercept of Difficulty Performing Housework .37 [.27, .47] 61 6.8 [–10.1, 23.7]
Smoker (yes) .34 [.30, .38] 15 13.9 [–3.3, 31.1]
Intercept of Leisure Activity .33 [.27, .39] 58 8.6 [–4.9, 22.1]
Linear slope of Fluid Intelligence .32 [.26, .38] 9 –5.9 [–10.6, –1.2]
Intercept of prescribed medications .32 [.20, .44] 28 8.6 [–10.0, 27.2]
Linear slope of Difficulty Performing 
Housework

.29 [.17, .41] 8 1.6 [–22.7, 25.9]

Intercept of Processing Speed .29 [.23, .35] 7 –7.8 [–14.1, –1.5]
Age at induction into studya .28 [.24, .32] 42 –18.1 [–30.1, –6.1]

Note: Random forest survival analysis (RFSA) and Cox proportional hazards analysis (Cox PH) were conducted in 
different subsets of participants; the data were randomly divided into two subsamples (n ≅ 3,000) so that each of the 
survival analyses could be conducted independently. Relative importance refers to relative importance in predicting 
mortality risk. Δχ2 indicates the improvement in the fit of the Cox PH model with the inclusion of each predictor; 
more influential variables have higher values. Cox PH estimates of percentage change in the hazard ratio are scaled in 
standardized units of the corresponding predictor variable (e.g., an individual whose number of years smoking was  
1 SD higher than the group mean would, on average, have an increased mortality risk of 11.4%). CMI = Cornell 
Medical Index.
aFor these variables, Δχ2 was influential and 95% CI for percentage change in hazard ratio was nonnull.
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descending order of importance, according to change in 
model fit, were the intercept of subjective health, gender, 
the linear slope of Processing Speed, age at induction 
into the study, and years smoking. Of these variables, 
only years smoking was related to increased mortality 
risk (increase of 1 SD in lifetime smoking increases risk 
by +11.4%). Better overall subjective health (increase of  
1 SD in health = decreases risk by 16.2%), being a woman 
(increase of 1 SD decreases risk by −33.0%), and smaller 
decrements with age (more positive slopes) in Processing 
Speed (increase of 1 SD decreases risk by 10.9%) were all 
predictive of reduced mortality risk. Age at induction into 
the study was also negatively related to mortality risk 
(i.e., being older at the start of the study was predictive 
of being older at time of death); this is a well-known 
selection effect (Lindenberger, Singer, & Baltes, 2002). 
With the exception of age at induction into  the study, 
these top predictors had RFSA relative-importance esti-
mates of .59 or higher.

Discussion

In a 29-year study of 6,203 individuals, ages 41 to 96 
years at initial assessment, we compared the influence of 

65 mortality risk factors. These included demographic 
variables, levels of tobacco and alcohol use, cognitive 
abilities, lifestyle attributes, and health indices. Results 
showed that better subjective health, being female, and 
smaller decrements in processing speed with age were 
most strongly linked to reductions in mortality risk. More 
years smoking (tobacco) was most predictive of increased 
mortality risk. Thus, these analyses showed that two psy-
chological variables—subjective health status and 
changes in processing speed with age—were among the 
top survival predictors (Fig. 1) and that they accounted 
for substantial variation in mortality risk even in the pres-
ence of well-established risk factors (e.g., male gender, 
smoking).

Subjective health status has been shown previously to 
be a reliable, valid, and relatively sensitive indicator of 
mortality risk (e.g., Idler & Benyamini, 1997). However, 
some studies have demonstrated strong attenuation in 
the strength of association between subjective health sta-
tus and mortality risk after adjusting for health and life-
style factors (e.g., Murata, Kondo, Tamakoshi, Yatsuya, & 
Toyoshima, 2006), whereas other studies have found this 
not to be the case (e.g., Heistaro, Jousilahti, Lahelma, 
Vartiainen, & Puska, 2001). In addition, severe (but not 

± ±

±
±

±

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25

Intercept of
Subjective Health

Female

Linear Slope of
Processing Speed

Intercept of Difficulty
With Housework

Intercept of
Leisure Activity

Years Smoking

Intercept of
No. of Rx Meds

Slope of
Illness Frequency 

Smoker

_
–

–

+

Re
la

tiv
e 

In
flu

en
ce

 o
n 

M
or

ta
lit

y 
Ri

sk

Explained Variation in Mortality Risk (%)

–

±±
±

±

Fig. 1.  The nine most influential mortality risk factors. Relative influence on mortality 
risk (as determined by random forest survival analysis) is graphed as a function of the 
percentage of explained variation in mortality risk (as determined by Cox proportional 
hazard analysis). Only variables with relative importance greater than .30 and associated 
with improved model fit of at least 15 are shown (see Table 6). The symbols indicate the 
factors that significantly increase mortality risk (+), significantly decrease mortality risk 
(–), or do not change mortality risk significantly (±). Rx Meds = prescription medications.
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mild or moderate) cognitive impairment has been shown 
to reduce the predictive influence of self-rated health on 
mortality risk (Walker, Maxwell, Hogan, & Ebly, 2004). 
The current findings show that subjective health is a 
powerful risk indicator even in the presence of sociode-
mographic, lifestyle, medical, and cognitive variables. 
Ocampo (2010) noted that self-rated health reflects com-
plex interrelations among biological, mental, social, and 
functional aspects of an individual: This higher-order 
integration (compared with more narrowly defined risk 
factors) may be especially important for predicting mor-
tality risk in middle-aged and older adults.

Processing speed has been shown to be more sensi-
tive than other cognitive abilities to the effects of aging 
(Salthouse, 1993), so processing speed may also signal 
variation in multiple underlying processes linked to mor-
tality risk. Decrements in processing speed have been 
linked to cardiovascular disease (Bosworth & Siegler, 
2002) and, in a subsample of participants from the pres-
ent study, to the prevalence of cerebral white-matter 
lesions (Rabbitt et al., 2007). Superior psychometric prop-
erties of processing speed (e.g., reliability and accuracy 
of measurement) may also contribute to its predictive 
efficacy (Bäckman & MacDonald, 2006).

We are aware of only one other survival study com-
paring processing speed with established demographic, 
lifestyle, and medical risk factors: Roberts et  al. (2009) 
found that, after adjusting for age and gender, processing 
speed (choice reaction time) predicted mortality risk 
more strongly than did physical activity, resting heart 
rate, psychological distress, waist-to-hip ratio, weekly 
alcohol consumption, body mass index, and socioeco-
nomic advantage. Only smoking status and systolic blood 
pressure were stronger predictors than processing speed. 
We used a broader range of risk factors (including mul-
tiple measures of cognitive ability) and state-of-the- 
art analyses (multiple imputation, RFSA, and Cox PH 
analysis)—and, importantly, we mutually adjusted all risk 
factors. We similarly found processing speed to be a 
stronger predictor than all but three of the 65 risk factors 
examined (i.e., only subjective health, gender, and smok-
ing were stronger).

We further note that smaller decrements in processing 
speed with age, rather than higher baseline levels of pro-
cessing speed, were most telling of reduced mortality 
risk. This suggests that relations between processing 
speed and mortality risk mainly hinge on pathologies 
that develop in mid- to late adulthood (i.e., rather than 
genetic precursors or early-life events)—although we 
cannot state this definitively because we did not assess 
risk factors during youth. More broadly, both subjective 
health status and processing speed likely mediate rela-
tions between other risk factors and mortality outcomes: 
These associations merit further investigation given that 

causal pathways linking psychological variables to mor-
tality risk remain ambiguous.

An important caveat to the current results concerns the 
CMI, which for most participants was administered sev-
eral years after initial assessment of cognitive and lifestyle 
variables. Individuals with CMI data were therefore likely 
to represent a slightly healthier population than people 
who left the study before CMI assessment, as confirmed 
by median age at death in each subsample (85.4 years vs. 
83.6 years, respectively). Although we used all available 
information to impute missing CMI values (see Method), 
the accuracy of the CMI variables may have been 
adversely affected by the comparatively large degree of 
missing data.

As a further check against this possibility, we con-
ducted a follow-up sensitivity analysis to predict survival 
in individuals who provided CMI data on at least one 
occasion. Results (reported in Section S4 of the Supple-
mental Material) showed that risk factors identified as 
most influential in the original analysis remained so, and 
there were only minor changes in order of importance. 
An exception to this outcome was that years smoking 
dropped in importance from position three in the full 
sample to position nine in the CMI sample—probably 
because smokers were more likely to drop out of the 
study early on (smokers accounted for 13.5% of CMI par-
ticipants and 16.2% in the broader participant pool).

In short, processing speed and subjective health status 
appeared as key risk factors in both analyses. Specific 
medical risk factors—in particular cardiovascular symp-
toms (which we hypothesized to be key to risk predic-
tion)—appeared to play less of a role than expected. It 
may be that these specific health markers (e.g., difficulty 
breathing, blood pressure, chest pain) are of greater 
importance for predicting mortality risk in populations 
with more sharply declining health (e.g., smokers). Fur-
ther research is needed to explore this possibility.

Conclusions

Addressing the needs of an aging global population will 
require accounting for numerous morbidity and mortality 
risk factors, such as demographic variables, health condi-
tions, functional capacities, mental abilities, and social 
support (Ocampo, 2010). To our knowledge, the current 
work represents the most comprehensive account to 
date, in terms of both the life spheres investigated and 
the statistical procedures adopted, of the comparative 
and combined influence of these diverse risk factors (65 
in total) on mortality outcomes in middle-aged and older 
adults. Our findings showed that two psychological vari-
ables, subjective health and processing speed, were bet-
ter indicators of mortality risk than nearly all of the other 
included predictors. This information can be obtained 
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with relatively little effort or cost and—given the tracta-
bility of these measures in different cultural contexts 
(e.g., Cores et al., 2015; French et al., 2012)—may prove 
expedient in screening for elevated mortality risk in 
diverse human populations.
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