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Abstract
Automated detection of facial action units in infants is challenging. Infant faces have different proportions, less texture, fewer 
wrinkles and furrows, and unique facial actions relative to adults. For these and related reasons, action unit (AU) detectors 
that are trained on adult faces may generalize poorly to infant faces. To train and test AU detectors for infant faces, we trained 
convolutional neural networks (CNN) in adult video databases and fine-tuned these networks in two large, manually anno-
tated, infant video databases that differ in context, head pose, illumination, video resolution, and infant age. AUs were those 
central to expression of positive and negative emotion. AU detectors trained in infants greatly outperformed ones trained 
previously in adults. Training AU detectors across infant databases afforded greater robustness to between-database differ-
ences than did training database specific AU detectors and outperformed previous state-of-the-art in infant AU detection. 
The resulting AU detection system, which we refer to as Infant AFAR (Automated Facial Action Recognition), is available 
to the research community for further testing and applications in infant emotion, social interaction, and related topics.

Keywords  Automatic facial action unit detection · Facial action coding system · Infant behavior · Cross domain 
generalizability · Deep learning

Introduction

Prior to the development of speech, communication depends 
on nonverbal behavior. Facial actions are a primary means 
for infants to communicate their emotions and intentions and 
regulate social interaction. The most comprehensive method 
to annotate facial actions is the anatomically based Facial 
Action Coding System (FACS) (Ekman, Friesen, & Hager, 
2002; Cohn & Ekman, 2005). FACS action units (AUs) are 
actions of individual or a group of facial muscles. For exam-
ple, AU12 (lip corner puller) is caused by contraction of the 
zygomatic major muscle, that pulls the lip corners obliquely 
(Cohn & Sayette, 2010). Alone or in combinations, AUs can 
describe most facial expressions with respect to component 
actions. Inferring emotion from facial movements and uni-
versality of facial expressions may be controversial (Barrett, 

Adolphs, Marsella, Martinez, & Pollak, 2019; Cowen et al., 
2021), but not the descriptive scope of FACS. Unlike sys-
tems that use emotion labels to describe expression, FACS 
explicitly distinguishes between facial actions and inferences 
about what they mean. Inferences about the emotional mean-
ing of facial actions are extrinsic to FACS (Cohn, Ambadar, 
& Ekman, 2007).

Baby FACS (Oster, 2006), which is an extension of FACS 
(Ekman et al., 2002) for infants, is an anatomically-based 
method to manually annotate facial action units in infant 
faces. Baby FACS coding, like FACS coding, is labor-inten-
sive, requires expert training, and is ill suited for real-time 
applications. An automated, objective, reliable system that 
can work in real-time would enable greatly expanded use of 
facial action coding in a wide range of applications.

Automated AU detection in infants has numerous current 
and potential research and clinical uses. Recent applications 
include investigating how infants cope with changes in their 
mother’s affect and contingent responsiveness (Ahn et al., 
2020a; Ahn, Onal Ertugrul, Chow, Cohn, & Messinger, 
2021), infant response to frustration and to stimuli intended 
to elicit positive emotion (Hammal et al., 2018), and infant 
responses to different foods (Maroulis, Spink, Theuws, Oster, 
& Buitelaar, 2017). A validated automated system available 
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to the research community could expand research on these 
topics and contribute to a variety of additional research ques-
tions. These include identifying infants at risk for insecure 
attachment (Cohn, Campbell, & Ross, 1991; Mesman, van 
IJzendoorn, & Bakermans-Kranenburg, 2009; Beebe & 
Steele, 2013) and infants with facial nerve abnormalities 
(Hammal, Chu, Cohn, Heike, & Speltz, 2017); infant food 
and taste preferences (Forestell & Mennella, 2017; Rosen-
stein & Oster, 1988), experience of pain (Kohut, Riddell, 
Flora, & Oster, 2012; Mattson, Cohn, Mahoor, Gangi, & 
Messinger, 2013) and response to maternal depression and 
distress (Campbell, Cohn, & Meyers, 1995). Mother-infant 
clinical interventions (Beebe, 2020) could be scaled to larger 
numbers of mothers and infants and to real-time use. Given 
its many potential uses, automated AU detection in infant 
faces is under-studied.

Unlike in infants, automated detection of AUs in adult 
faces has been widely studied. Early studies in infants 
used what are referred to in machine learning as “shallow 
approaches” in which facial features are extracted and then 
used to train classifiers. Facial features include appearance 
features that describe the texture or color of facial regions 
(Jiang, Valstar, Martinez, & Pantic, 2014; Chen, Liu, Tu, 
& Aragones, 2013; Baltrusaitis, Zadeh, Lim, & Morency, 
2018), geometric features that capture the statistics derived 
from the location of facial landmarks (e.g., lip corners) 
(Mahoor, Cadavid, Messinger, & Cohn, 2009) and motion 
features that capture the deformations in the skin related to 
facial muscle contraction (Valstar, Pantic, & Patras, 2004). 
Such features are often referred to as hand-crafted in that 
they are defined a priori. Hand-crafted features are gener-
ally combined to train and test AU classifiers such as Sup-
port Vector Machines (SVM) (Burges, Burges (1998); Hsu, 
Chang, & Lin, 2003), and Artificial Neural Networks (ANN) 
(Hinton, 1992).

By contrast, the most powerful contemporary approach is 
“deep learning” (LeCun, Bengio, & Hinton, 2015), in which 
the informative features are learned automatically from the 
video during training. Several deep methods (Zhao, Chu, & 
Zhang, 2016; Chu, De la Torre, & Cohn, 2017; Onal Ertu-
grul, Yang, Jeni, & Cohn, 2019c; Yang et al., 2019) have 
been proposed and shown to outperform shallow approaches 
for AU detection.

Most of the available open source or commercial AU 
detectors are trained with the faces of young adults. Open-
Face (Baltrusaitis et al., 2018) and AFAR (Onal Ertugrul, 
Jeni, Ding, & Cohn, 2019b) are open source toolboxes that 
both provide a user-friendly GUI and are easy to use by non-
programmers. However, AU detectors of both of these tools 
are trained with databases containing only adult faces. How 
they generalize to detect AUs in the infant faces is unknown. 
AFFDEX by Affectiva, FaceReader by Noldus, and CERT/
FACET by iMotions are commercial AU detectors and they 

are either not accessible to all researchers or costly. Moreo-
ver, the databases that are used to train these systems as well 
as their cross-domain generalizability are unknown.

AU detectors trained with adult faces are generally shown 
to perform well within the same domain (e.g. same or simi-
lar experimental conditions such as context, video resolu-
tion, illumination, head pose). Yet, they show diminished 
generalizability to new domains even if the age distributions 
in both domains are similar (Onal Ertugrul et al., 2019a). 
Infant faces differ from adult faces in terms of proportion 
(e.g. larger eyes and smaller jaw-to-face ratio), skin smooth-
ness, amount of texture and wrinkles and presence of brow 
knitting action (Oster, 2006; Eibl-Eibesfeldt, 1970). For 
these reasons, AU detectors trained with adult faces may 
not be well suited to detect actions in infant faces. Models 
specifically trained to detect AUs in infant faces are needed.

Earlier studies on AU detection in infants used a semi-
automatic computer vision approach (Active Appearance 
Model (Cootes, Edwards, & Taylor, 2001; Matthews & 
Baker, 2004) to track faces and extract facial features. They 
required manual initialization and person-specific train-
ing (Messinger, Mattson, Mahoor, & Cohn, 2012; Zaker, 
Mahoor, Messinger, & Cohn, 2014; Mattson et al., 2013). In 
part for this reason, training and testing were limited to small 
numbers of infants. Twelve infants was the largest number 
used; in one case, as few as two infants and two AUs were 
used (Messinger, Mahoor, Chow, & Cohn, 2009).

More recently, fully automated approaches have been pro-
posed. Baby FaceReader (Maroulis et al., 2017) is a com-
mercial AU detector for use in infants developed by Noldus. 
Baby FaceReader expanded the number of AUs relative to 
previous approaches but was validated on a scant 74 video 
frames. Hammal et al. (2017) proposed a deep approach that 
uses convolutional neural networks (CNNs) to automati-
cally detect nine AUs in video of infant faces. Because their 
experiments were limited to a single database, cross-domain 
generalizability of their models could not be evaluated, there 
was no comparison of their AU detectors with ones trained 
in adults, and their infant AU detectors are not publicly 
available for other researchers to use.

Using a deep learning approach to fully automated AU 
detection in infants and larger databases than used previ-
ously, we pursued three related questions:

(1)	 Do AU detectors trained in adult faces generalize to 
infant faces? We compared state-of-the-art AU detec-
tors trained in adults (Onal Ertugrul et al., 2019b) with 
ones trained in infants. We refer to the ones trained 
in adults as Adult AFAR. Based on prior research on 
generalizability of AU detectors between different 
domains, we hypothesized that Adult AFAR would 
perform less well than AU detectors trained specifi-
cally in infants.
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(2)	 Do AU detectors trained in one infant database general-
ize to another infant database? Based on prior research, 
we anticipated that generalizability between infant 
databases would be attenuated.

(3)	 Does “pre-training” AU detectors in adults and then 
training on infants afford advantages relative to train-
ing infant AU detectors from scratch? In training from 
scratch, weights of the network are randomly initial-
ized. Earlier work on several computer vision tasks has 
found that using the weights of a pre-trained neural 
network and then fine-tuning it (that is, re-training the 
initialized neural network) generally outperforms train-
ing from scratch. Especially when data sets are small, 
starting with learned weights rather than random ones 
is helpful. To investigate this, we compared the per-
formances of infant AU detectors trained from scratch 
with an AU detector that was pre-trained on adult faces 
and fine-tuned on infant faces.

The findings lead us to propose Infant AFAR, a fully auto-
mated tool to detect AUs in video of infants (see Fig. 1). 
Rather than initializing the weights of Infant AFAR ran-
domly, we use Adult AFAR as the initial neural network 
and use its weights to initialize our new model, referred 
to as Infant AFAR. Initial weights capture information 
about detecting AUs in adults. Then we fine-tune (train the 

initialized neural network), Infant AFAR, with the faces 
of infants in two large, well-annotated infant databases 
for four AUs namely, AU4, AU6, AU12, and AU20. The 
databases are FF-NSF-MIAMI (referred to as MIAMI for 
brevity) (Chen, Chow, Hammal, Messinger, & Cohn, 2020; 
Hammal, Cohn, & Messinger, 2015) and CLOCK (Hammal 
et al., 2017) which differ in terms of infant age, context, 
illumination, and video resolution. We also train models 
for five additional AUs that are manually annotated only 
in CLOCK; namely, AU1, AU2, AU3, AU9 and AU28, and 
perform comparisons with the available AU detectors. We 
make Infant AFAR publicly available to the research com-
munity as a part of AFAR toolbox which has a user-friendly 
GUI for use by non-programmers.

AU detection in infants

Databases

We performed experiments using two well-annotated, large 
infant spontaneous behaviour databases that differ in infant 
age, context, and video resolution.

MIAMI is a database of spontaneous behavior in 43 
four-month old infants (Chen et al., 2020; Hammal et al., 
2015). Infants were recorded while they interacted with 
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Fig. 1   Steps to obtain Infant AFAR. (a) First, a VGG-16 network 
that is pre-trained on ImageNet database is trained with adult faces 
to obtain Adult AFAR. (b) Weights of the Adult AFAR network are 

used to initialize Infant AFAR. Then initialized network is further 
fine-tuned using infant faces in MIAMI and CLOCK databases to 
obtain Infant AFAR that can detect AUs in infant faces automatically
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their mothers in a Face-to-Face/Still-Face (FF/SF) proto-
col (Adamson & Frick, 2003) that elicits both positive and 
negative affect. FF/SF protocol assesses infant responses 
to parent unresponsiveness, which is an age-appropriate 
stressor. The FF/SF has three episodes: (i) parent and 
infant engage in face-to-face interaction (FF), (ii) the par-
ent stops interacting with the infant and gazes at them 
with a neutral expression (SF), and (iii) the parent-infant 
interaction resumes (RE). Video resolution is 1288 × 964 . 
In total there are 116K manually annotated frames in 129 
videos (of 43 infants for each FF, SF, and RE episodes). 
AUs were manually annotated from the video by certified 
FACS (Ekman et al., 2002) coders with advanced train-
ing in Baby FACS (Oster, 2006) for four action units: 
AU4 (brow lowerer), AU6 (cheek raiser), AU12 (lip cor-
ner puller), and AU20 (lip stretcher). The combination of 
AU6 and AU12 is associated with positive affect; AU4 
and AU20 with negative affect (Messinger et al., 2012; 
Camras, 1992; Matias & Cohn, 1993). Inter-observer reli-
ability, quantified using coefficient kappa, averaged 0.85.

The second database was generated by a multisite, longi-
tudinal project known as CLOCK (Craniofacial microso-
mia: Longitudinal Outcomes in Children pre-Kindergarten), 
which examined the neurodevelopmental and phenotypic 
outcomes of infants with craniofacial microsomia (CFM) 
and demographically-matched controls (Luquetti et al., 2019; 
Speltz et al., 2018). As CFM is characterized by mostly 
mild, but sometimes severe facial asymmetries (Heike 
et al., 2016; Hammal et al., 2017), a subset of CLOCK par-
ticipants (44 cases and 36 controls) was observed and video 
recorded at age 13 months to compare facial expressiveness 
across groups (see Hammal et al., 2018). Specifically, two 
age-appropriate emotion induction tasks were used to elicit 
spontaneous positive and negative facial expressions (Gold-
smith & Rothbart, 1999). In the positive emotion task, an 
experimenter blew soap bubbles towards the infant. In the 
negative emotion task, an experimenter presented a toy car 
to the infant, allowed the child to touch it, then retrieved 
the car and covered it with a transparent plastic bin. Both 
tasks were repeated three times unless the infant became 
too upset to continue or the mother became uncomfortable 
with the procedure. Each video was approximately 2 min 
in duration (745K frames and 634K tracked frames in all). 
Video resolution was 1920 x 1080. AUs were manually 
annotated from the video by certified FACS coders with 
advanced training in Baby FACS for nine action units: AU1 
(inner brow raiser), AU2 (outer brow raiser), AU3 (inner 
brows drawn together), AU4 (brow lowered), AU6 (cheek 
raiser), AU9 (nose wrinkle), AU12 (lip corner puller), AU20 
(lip stretcher), and AU28 (lip suck). To assess inter-coder 
agreement, two or more of the coders independently coded 
on a frame-by-frame basis 15 seconds of randomly selected 
segments from 68 infants. Inter-coder agreement, quantified 

using free-margin kappa (Brennan & Prediger, 1981), was 
0.82.

Automatic face tracking and registration

For automatic face tracking and registration we use the 
ZFace module (Jeni, Cohn, & Kanade, 2017) of AFAR 
toolbox (Onal Ertugrul et al., 2019b). ZFace accomplishes 
dense 3D registration from 2D video without person-specific 
training. Tracked faces are normalized in terms of rotation 
and scale and then centered. Faces then are normalized 
to the inter-ocular distance (IOD) of 80 pixels. We obtain 
224 × 224 pixel images of faces with 80 pixels IOD.

Action unit detection

In all cases, we use a deep learning approach that is based on 
training and testing a convolutional neural network. We use 
the VGG-16 network, which is a convolutional neural net-
work containing 16 layers (Simonyan & Zisserman, 2014) 
pretrained on the ImageNet database (Deng et al., 2009), 
which includes 1.2 million images, as the initial network. 
Initializing the model with the weights of this pre-trained 
model has been shown to outperform initializing one with 
random weights for AU detection as well as other visual 
classification tasks (Niinuma, Jeni, Onal Ertugrul, & Cohn, 
2019). Since the first few layers capture low-level informa-
tion that is learned on ImageNet, the first two convolutional 
blocks are kept frozen before fine-tuning the remaining lay-
ers. We train individual networks for the four AUs that are 
common to both databases; namely, AU4, AU6, AU12, and 
AU20 as shown in Fig. 2a for thorough cross-domain gener-
alizability investigations. We also train individual networks 
for the five additional AUs that are manually annotated only 
for CLOCK; namely AU1, AU2, AU3, AU9, and AU28 as 
shown in Fig. 2b to perform comparisons with the avail-
able AU detectors. The final layer of the VGG-16 network is 
replaced with a layer having a single neuron for occurrence 
detection of individual AUs. A sigmoid activation function 
is used at the output of final layer for non-linearity. We use 
binary-cross entropy loss (L) as follows:

where y is actual AU occurrence, ŷ is predicted occurrence.
Training is performed using stochastic gradient descent 

optimizer with a learning rate lr = 10−3 and momentum 
= 0.9 . Values obtained at the output neuron are between 
[0, 1], corresponding to the occurrence probability of the 
related AU. During test time, we assign the positive AU 
occurrence label to the instances with probability greater 
than or equal to 0.5. To avoid over fitting, we perform 3-fold 
cross validation in all of the experiments. Since the base 

(1)L = y ⋅ log ŷ + (1 − y) ⋅ log(1 − ŷ)
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rates of AUs are low in both infant databases (see Table 1), 
we obtain a balanced training set for each fold. We down-
sample frames in which AU is absent so that to the number 
of frames where AU is present and absent are equal.

Studies

We perform five studies to evaluate the performance of 
infant AU detectors as follows:

Study 1: We train and test the AU detectors using 
frames from the same database (within MIAMI and within 
CLOCK). AU detectors are trained from scratch (i.e. net-
work weights are randomly initialized before training). Since 
these databases are collected in relatively controlled environ-
ments, domains including context, illumination, and video 
resolution are the same or similar for different participants 
in the same database. Previous works have shown that AU 
detection performance is generally better for within data-
base studies compared to cross database ones (Onal Ertugrul 
et al., 2019a; Ertugrul et al., 2020). Differences in domains 
may hurt the performance. Within database performance 
may be considered as the expected upper limit for an AU 
detector.

Study 2: We train and test the AU detectors using 
frames from both MIAMI and CLOCK databases. AU 
detectors are trained from scratch (i.e. network weights 
are randomly initialized before training). MIAMI and 

CLOCK databases differ in context (Face-to-Face/Still-
Face mother-infant interaction vs. positive/negative emo-
tion tasks with an experimenter), illumination, video reso-
lution, and age. Infants are 4 and 13 months in MIAMI and 
CLOCK, respectively.

Study 3: We train AU detectors using frames from one 
infant database (e.g. MIAMI or CLOCK) and test them with 
the other database. Our goal is to investigate how well AU 
detectors trained on one infant database generalize to an 
unseen domain (the other infant database).

Study 4: We train AFAR on adult faces in EB+ (Onal 
Ertugrul et al., 2019a) database where age of participants 
range from 18 years to 66 years and GFT (Girard, Chu, Jeni, 
& Cohn, 2017) database where age of participants range 
from 21 years to 28 years. We used this adult AFAR model 
to detect AUs in infant faces in MIAMI and CLOCK to 
understand how well an AU detector trained on adult faces 
generalize to detect AUs in infant faces.

Study 5: Infant AFAR: We first train our AU detector on 
adult faces in databases EB+ (Onal Ertugrul et al., 2019a) 
(200 adult subjects) and GFT (150 adult subjects) (Girard 
et al., 2017) to obtain adult AFAR. Then we fine-tune adult 
AFAR using the frames from the infant databases to detect 
AUs in infant faces. The final model is referred to as Infant 
AFAR. The initial network captures the AU-related informa-
tion from adult faces and the fine-tuning step helps learning 
infant-specific features related to AUs.

AU1 (inner brow raiser)

AU3 (inner brows drawn together)

AU9 (upper lip raiser)

AU28 (lip suck)

AU2 (outer brow raiser)
AU4 (brow lowerer)

AU6 (cheek raiser)

AU12 (lip corner puller)

AU20 (lip stretcher)

(a) (b)

Fig. 2   Action Units (AUs) that are automatically detected with Infant AFAR. AUs shown in Fig. 2a are manually annotated in both infant data-
bases and the ones shown in Fig. 2b are manually annotated in only one of the databases (CLOCK)

Table 1   Base rates of AUs in the infant databases

Base rates AU1 AU2 AU3 AU4 AU6 AU9 AU12 AU20 AU28

MIAMI − − − 0.10 0.31 − 0.26 0.12 −
CLOCK 0.26 0.20 0.23 0.11 0.33 0.07 0.22 0.18 0.08
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Evaluation

Different metrics capture different properties of AU detec-
tion performance. We report a variety of metrics: S score 
(free-margin kappa), area under ROC curve (AUC), positive 
agreement (PA), and negative agreement (NA) following 
(Girard et al., 2017).

PA is computed as 2tp

2tp+fp+fn
 . When only two methods are 

compared (e.g., Infant AFAR versus manual AU coding), PA 
is equivalent to F1 (harmonic mean of precision and recall), 
which is the most commonly used metric in AU detection 
literature. PA quantifies performance on correct predictions 
on positive samples. NA is the complement of PA and is 
computed as 2tn

2tn+fp+fn
 . It evaluates the solution by the har-

monic agreement of instances not including AUs.
Area Under the Receiver Operating Characteristics Curve 

(AUC) is equal to the probability that a classifier will rank a 
randomly chosen frame in which AU is present higher than 
a randomly chosen one in which AU is absent. Therefore, 
this measure shows the success of classifier to rank frames 
with and without AU.

S score or free-marginal kappa coefficient provides a 
chance-adjusted summary statistic (Girard et al., 2017). It is 
computed as 2tp+2tn

tp+fp+fn+tn
− 1 . It is equal to the ratio of 

observed non-chance agreement to possible non-chance 
agreement. It estimates chance agreement by assuming that 
each category is equally likely to be chosen at random.

Many of the AUs have low base rates. AUC is robust to 
imbalanced data while PA and NA are not (Jeni, Cohn, & De 
La Torre, 2013), which should be taken into account when 
evaluating results for AUs that occur less often.

Results

We report AU detection results for four AUs that are central 
to emotion expression and social signaling that are common 
to both infant databases: AU4 (brow lowerer), AU6 (cheek 
raiser), AU12 (lip corner puller), and AU20 (lip stretcher). 
Table 2 shows results on MIAMI database. Table 3 shows 
results on CLOCK. Since EB+ and GFT lack annotations 
for AU20, Adult AFAR and Infant AFAR results are not 
possible for AU20.

Comparison of the performance of infant and adult 
AU detectors on infant databases

Our first question is whether AU detectors trained in adult 
faces (i.e. Adult AFAR) generalize well to infant faces. To 
answer this question, we compare the performances of the 
infant AU detector in Study 1 (in which the same database is 

used to train and test the model) and adult AU detector (i.e. 
Adult AFAR) in Study 4. Results of the adult AU detector 
are low and consistently much lower compared to the results 
of the infant AU detector for both databases. On MIAMI 
dataset, PA scores for the Infant AU detectors (Study 1) are 
15% higher for AU4, 8% higher for AU6, and 11% higher 
for AU12 compared to PA in Study 4. On CLOCK dataset, 
PA for the Infant AU detectors are 15% higher for AU4, 
12% higher for AU6, and 9% higher for AU12 compared to 
PA in Study 4. Similar differences in the performances are 
observed in S scores and AUC values for both databases. 
As noted above, Infant and Adult AU detectors could not 
be compared for AU 20. These results suggest that models 
trained to detect AUs in adult faces fail to generalize well 
to infant faces.

Comparison of within‑database and cross‑database 
performance

In adult databases, cross database performance is lower than 
within-database performance (Onal Ertugrul et al., 2019a; 
Ertugrul et al., 2020). Our second question is whether same 
is found for generalizability between infant databases. To 
answer this question, we compare the performances in Study 
1 and Study 3.

Cross-database results are diminished compared to 
within-database results for all AUs and all measures. 
On MIAMI dataset, PA in Study 1 (within-database) are 
12% higher for AU4, 16% higher for AU6, 5% higher for 
AU12, and 12% higher for AU20 compared to PA in Study 
3 (between-database). On CLOCK dataset, PA in Study 1 
are 30% higher for AU4, 9% higher for AU6, 6% higher for 
AU12, and 42% higher for AU20 compared to PA in Study 
3. Similarly, very high differences are observed when AUC 
is used. These results suggest that a model trained on one 
infant database fails to generalize well to the other infant 
database. This finding is analogous to what has been found 
previously for adult AU detection. These findings suggest 
that efforts are needed to adapt models to new domains.

We further elaborate on the cross-domain performances 
of the models trained on MIAMI and CLOCK. For AU4 and 
AU20, cross-database results are very different for MIAMI 
and CLOCK although the within-database performances 
are similar. For example, when PA is used, cross-database 
performance to detect AU4 is 0.57 for the model trained 
on CLOCK and tested on MIAMI (see Table 2a) whereas 
0.31 for the model trained on MIAMI and tested on CLOCK 
(see Table 3a). Similarly, for AU20 achieved PA for cross 
domain experiments is 0.52 on MIAMI (see Table 2d) and 
0.24 on CLOCK (see Table 3d). It can be inferred that mod-
els trained on CLOCK generalizes better to detect AU4 and 
AU20 in the unseen databases (e.g. MIAMI), compared to 
the models trained on MIAMI. For AU12, cross-domain 
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performances on CLOCK and MIAMI are similar. For 
AU6, the model trained on MIAMI and tested on CLOCK 
performed better (0.72 PA in Table 3b) compared to the 
model trained on CLOCK and tested on MIAMI (0.65 PA 
in Table 2b). We can infer that AU6 detectors trained on 
MIAMI generalize better to unseen domains.

Comparison of Infant AFAR with infant AU detectors 
that are trained from scratch

Our third question is whether fine-tuning the pre-trained 
Adult AFAR with infant faces outperforms training infant 
AU detectors from scratch. For this comparison, we trained 
two models from scratch: (1) In Study 1, we train and test the 
model with the same infant database and (2) In Study 2, we 
train and test the model with a combination of MIAMI and 
CLOCK database. We compare the results obtained in Study 

1 and Study 2 with the results of Infant AFAR obtained in 
Study 5.

Infant AFAR, in which adult AFAR is fine-tuned using 
infant faces, performs the best in most cases and achieves 
comparable performance to within database or within age-
group performances in the rest. In both MIAMI and CLOCK 
databases Infant AFAR achieves the best performance to 
detect AU6 by performing better than or equal to within 
database results in Study 1 (which can be considered as the 
upper limit). Infant AFAR achieves the best performance 
to detect AU4 on MIAMI when all measures are used. On 
CLOCK, Infant AFAR performance is similar to results 
of Study 2 and slightly worse than results of Study 1. For 
AU12, Infant AFAR achieves the second best result after 
results of Study 2 on MIAMI but these results are very simi-
lar. On CLOCK, Infant AFAR achieves the best performance 
when AUC, PA and NA are used for evaluation.

Table 2   AU detection performances on MIAMI dataset

Left-side of the → denotes the database(s) used to train the model in the related study. Right-side of the → denotes the database used to test the 
models (i.e. MIAMI)
The best results are shown in bold

− S AUC​ PA NA

(a) AU4
Study 1: MIAMI → MIAMI 0.88 0.83 0.69 0.97
Study 2: (MIAMI + CLOCK) → MIAMI 0.87 0.80 0.65 0.96
Study 3: CLOCK → MIAMI 0.80 0.79 0.57 0.94
OpenFace −0.08 0.64 0.25 0.58
Study 4 - Adult AFAR: (EB+ + GFT) → MIAMI 0.74 0.82 0.54 0.92
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → MIAMI 0.90 0.85 0.73 0.97
(b) AU6
Study 1: MIAMI → MIAMI 0.75 0.86 0.81 0.90
Study 2: (MIAMI + CLOCK) → MIAMI 0.73 0.86 0.80 0.89
Study 3: CLOCK → MIAMI 0.34 0.75 0.65 0.68
OpenFace 0.51 0.63 0.43 0.85
Study 4 - Adult AFAR: (EB+ + GFT) → MIAMI 0.59 0.82 0.73 0.83
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → MIAMI 0.76 0.86 0.81 0.91
(c) AU12
Study 1: MIAMI → MIAMI 0.77 0.85 0.77 0.92
Study 2: (MIAMI + CLOCK) → MIAMI 0.78 0.87 0.79 0.92
Study 3: CLOCK → MIAMI 0.72 0.81 0.72 0.91
OpenFace 0.67 0.74 0.63 0.89
Study 4 - Adult AFAR: (EB+ + GFT) → MIAMI 0.60 0.77 0.66 0.85
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → MIAMI 0.76 0.84 0.77 0.91
(d) AU20
Study 1: MIAMI → MIAMI 0.81 0.79 0.64 0.94
Study 2: (MIAMI + CLOCK) → MIAMI 0.81 0.81 0.66 0.94
Study 3: CLOCK → MIAMI 0.66 0.79 0.52 0.89
OpenFace 0.56 0.55 0.21 0.87
Study 4 - Adult AFAR: (EB+ + GFT) → MIAMI − − − −
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → MIAMI − − − −
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Overall, fine-tuning adult AFAR with infant faces per-
forms the best or similar to the best to detect AUs in the 
infant faces. We provide Infant AFAR models for AU4, 
AU6, and AU12 with this paper. For AU20, we provide the 
model trained with both MIAMI and CLOCK in Study 2.

Comparison with the previous AU detectors

We compared the performance of Infant AFAR with an 
infant AU detector proposed by Hammal et al. (2017) and 
an open source toolbox OpenFace (Baltrusaitis et al., 2018) 
trained on adult faces.

Hammal et al. (2017) reported AU detection results on 
CLOCK database. Infant AFAR significantly outperforms 
the method of Hammal et al. (2017) to detect AU4 (37% 
improvement), AU6 (7% improvement), and AU12 (14% 
improvement) when PA values are compared. For AU20, 
our model trained on both infant databases achieved 19% 
improvement in PA over Hammal et al. (2017). Note that S 
and NA values are similar for both models except for AU4, 
where Infant AFAR performed 7% worse when S values are 
compared. These results suggest that our models are more 
successful to detect the AUs in the positive samples com-
pared to Hammal et al. (2017).

Table 3   AU detection performances on CLOCK dataset

Left-side of the → denotes the database(s) used to train the model in the related study. Right-side of the → denotes the database used to test the 
models (i.e. CLOCK)
The best results are shown in bold

− S AUC​ PA NA

(a) AU4
Study 1: CLOCK → CLOCK 0.82 0.79 0.61 0.96
Study 2: (MIAMI + CLOCK) → CLOCK 0.78 0.80 0.57 0.94
Study 3: MIAMI → CLOCK 0.81 0.60 0.31 0.95
Hammal et al. (2017) 0.84 − 0.19 0.96
OpenFace −0.01 0.62 0.26 0.62
Study 4 - Adult AFAR: (EB+ + GFT) → CLOCK 0.70 0.72 0.46 0.91
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → CLOCK 0.77 0.79 0.56 0.93
(b) AU6
Study 1: CLOCK → CLOCK 0.73 0.87 0.81 0.89
Study 2: (MIAMI + CLOCK) → CLOCK 0.75 0.88 0.83 0.90
Study 3: MIAMI → CLOCK 0.68 0.78 0.72 0.89
Hammal et al. (2017) 0.74 − 0.76 0.91
OpenFace 0.65 0.83 0.69 0.89
Study 4 - Adult AFAR: (EB+ + GFT) → CLOCK 0.67 0.77 0.69 0.89
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → CLOCK 0.77 0.88 0.83 0.91
(c) AU12
Study 1: CLOCK → CLOCK 0.78 0.86 0.76 0.93
Study 2: (MIAMI + CLOCK) → CLOCK 0.80 0.86 0.77 0.93
Study 3: MIAMI → CLOCK 0.74 0.80 0.70 0.92
Hammal et al. (2017) 0.77 − 0.64 0.93
OpenFace 0.67 0.83 0.69 0.89
Study 4 - Adult AFAR: (EB+ + GFT) → CLOCK 0.73 0.76 0.65 0.92
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → CLOCK 0.79 0.87 0.78 0.93
(d) AU20
Study 1: CLOCK → CLOCK 0.72 0.81 0.66 0.91
Study 2: (MIAMI + CLOCK) → CLOCK 0.72 0.83 0.67 0.91
Study 3: MIAMI → CLOCK 0.68 0.57 0.24 0.91
Hammal et al. (2017) 0.72 − 0.48 0.92
OpenFace 0.58 0.58 0.31 0.87
Study 4 - Adult AFAR: (EB+ + GFT) → CLOCK − − − −
Study 5 - Infant AFAR: (EB+ + GFT + MIAMI + CLOCK) → CLOCK − − − −
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We obtained results with OpenFace on both MIAMI and 
CLOCK databases. When PA values are compared, Infant 
AFAR substantially outperforms OpenFace to detect AU4 
(48% improvement on MIAMI and 30% improvement on 
CLOCK), AU6 (38% improvement on MIAMI and 14% 
improvement on CLOCK) and AU12 (14% improvement on 
MIAMI and 9% improvement on CLOCK). For AU20, our 
model trained with both databases outperformed OpenFace 
on MIAMI (45% improvement) and CLOCK (36% improve-
ment) databases. Similarly, Infant AFAR outperforms Open-
Face on both databases when S, AUC, and NA measures 
are used. Note that OpenFace yields negative S scores for 
AU4 on both MIAMI and CLOCK databases meaning that 
agreement between the two raters (manual annotations and 
labels assigned by OpenFace) are slightly worse than chance.

Comparison of AU detectors on additional AUs 
manually annotated for CLOCK

In addition to the four AUs that are annotated for both 
MIAMI and CLOCK, five additional AUs namely, AU1, 
AU2, AU3, AU9 and AU28 are manually annotated for only 
CLOCK database. Although thorough cross-domain experi-
ments cannot be performed for these AUs, we can compare 
the performances of Study 1 (within-database), Study 4 
(Adult AFAR), OpenFace, and models in Hammal et al. 
(2017) with the available AUs. We also make the models 
trained in Study 1 for the additional AUs publicly available.

Table 4 shows that when PA and AUC values are com-
pared models trained in Study 1 yielded the best perfor-
mance. When S scores are compared, the AU detector pro-
posed by Hammal et al. (2017) outperformed our model for 
AU1 and AU2, both models performed similarly for AU3, 
and our models trained in Study 1 outperformed the AU 
detector by Hammal et al. (2017) for AU9 and AU28. Sim-
ilarly, our models trained in Study 1 outperformed Adult 
AFAR and OpenFace. Note that OpenFace and Adult AFAR 
did not provide AU3 results. Our tool will be the first pub-
licly available tool that provides predictions for AU3.

Discussion and future work

AU detectors that have been trained and tested in adults are 
becoming available for research use (Girard, Cohn, Jeni, 
Lucey, & De la Torre, 2015; Onal Ertugrul et al., 2019b; 
Baltrusaitis et al., 2018). It may be tempting to apply them to 
infant faces. Our findings strongly contraindicate use of AU 
detectors that have not been trained and tested in infants. In the 
current study, state-of-the-art AU detectors trained and tested 
in adults greatly under-performed on all metrics when applied 
to infant faces. AU detectors for adults cannot be assumed 
valid for infants in absence of evidence to the contrary.

AU detectors when trained and tested in different infant 
databases may have reduced generalizability as well. Infant 
AFAR was trained and tested in databases that differed in 
head pose, illumination, video resolution, emotion context 
and infant age. Infant AFAR generally outperformed AU 
detectors trained separately within databases. These findings 
are consistent with what has been reported previously in adults 
(Ertugrul et al., 2020). Greater diversity in training data and 
greater similarity between training and application domains 
optimize performance. Diversity in training and testing data are 
strengths of Infant AFAR. Nevertheless, the generalizability 
of Infant AFAR to domains much different from the ones in 
which it was trained and tested is an empirical question

Pre-training on a large dataset and fine-tuning on the data-
set of interest has been shown to improve performance in 
several machine learning tasks including speech recognition 

Table 4   AU detection performances on CLOCK dataset (additional 
AUs)

The best results are shown in bold

− S AUC​ PA NA

(a) AU1
Study 1: CLOCK → CLOCK 0.50 0.67 0.51 0.83
Hammal et al. (2017) 0.77 − 0.48 0.94
OpenFace 0.40 0.63 0.45 0.79
Study 4 - Adult AFAR: (EB+ + GFT) → 

CLOCK
0.15 0.61 0.46 0.65

(b) AU2
Study 1: CLOCK → CLOCK 0.52 0.67 0.46 0.84
Hammal et al. (2017) 0.77 − 0.33 0.94
OpenFace 0.30 0.60 0.38 0.75
Study 4 - Adult AFAR: (EB+ + GFT) → 

CLOCK
0.44 0.62 0.40 0.82

(c) AU3
Study 1: CLOCK → CLOCK 0.67 0.72 0.58 0.90
Hammal et al. (2017) 0.69 − 0.50 0.91
OpenFace − − − −
Study 4 - Adult AFAR: (EB+ + GFT) → 

CLOCK
− − − −

(d) AU9
− S AUC​ PA NA
Study 1: CLOCK → CLOCK 0.86 0.82 0.55 0.96
Hammal et al. (2017) 0.77 − 0.26 0.98
OpenFace 0.76 0.75 0.39 0.93
Study 4 - Adult AFAR: (EB+ + GFT) → 

CLOCK
− − − −

(e) AU28
Study 1: CLOCK → CLOCK 0.84 0.81 0.57 0.96
Hammal et al. (2017) 0.83 − 0.25 0.72
OpenFace 0.81 0.50 0.04 0.95
Study 4 - Adult AFAR: (EB+ + GFT) → 

CLOCK
− − − −
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(Bansal, Kamper, Livescu, Lopez, & Goldwater, 2019), bio-
medical image analysis (Zhou et al., 2017) and 3D point 
cloud understanding (Xie et al., 2020). Consistent with AU 
detection results in adults, pre-training and fine-tuning opti-
mized classifiers (Niinuma et al., 2019). Previous work in 
AU detection in infants has omitted pre-training in adults 
and fine-tuning. Infant AFAR outperformed previous state-
of-the-art in infant AU detection (Hammal et al., 2018). 
Lack of pre-training and fine-tuning in that previous work 
may have been a contributing factor.

Infant AFAR is proposed to contribute to advancing 
behavior research on infants. Infant AFAR can automatically 
detect the occurrence of AUs that are central to expression of 
positive and negative affect. AU12 is associated with social 
smile and in combination with AU6 is associated with the 
Duchenne enjoyment smile. The combination of AU4 and 
AU20 is associated with cry-face and combination of AU4, 
AU6, and AU20 is observed during a Duchenne cry-face 
(Mattson et al., 2013; Kohut et al., 2012). Additionally, with 
the models trained only on CLOCK, Infant AFAR can detect 
the occurrence of AU1 (inner brow raiser), AU2 (outer brow 
raiser), AU3 (inner brows drawn together), AU9 (nose wrin-
kler), and AU28 (lip suck). One limitation of Infant AFAR is 
that it can detect only a limited number of AUs compared to 
the off-the-shelf toolboxes. This limitation is caused by the 
limited number of AUs manually coded using BabyFACS. 
Yet, it can detect a set of AUs that are observed frequently 
during spontaneous behavior with superior performance. 
These action units and smile / cry-face expressions are 
important to automatically investigate infant behavior in sev-
eral works, including but not limited to investigating infant’s 
response to mother’s unresponsiveness during face-to-face 
/ still-face protocol (Ahn et al., 2020a; Ahn et al., 2021), 
assessing facial nerve injuries and disorders (Hammal et al., 
2018), automatically analyzing social communication behav-
iors in children with suspected Autism Spectrum Disorder 
(Ahn et al., 2020b, reaction to tastes (Rosenstein & Oster, 
1988), and experience of pain (Kohut et al., 2012; Mattson 
et al., 2013).

Open practices statement
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Code for Infant AFAR is available through Github1.
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