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ABSTRACT

Brain-behavior associations in fMRI studies are typically restricted to a single level of analysis: either a circumscribed brain region-of-interest (ROI) or a larger network
of brain regions. However, this common practice may not always account for the interdependencies among ROIs of the same network or potentially unique infor-
mation at the ROI-level, respectively. To account for both sources of information, we combined measurement and structural components of structural equation
modeling (SEM) approaches to empirically derive networks from ROI activity, and to assess the association of both individual ROIs and their respective whole-brain
activation networks with task performance using three large task-fMRI datasets and two separate brain parcellation schemes. The results for working memory and
relational tasks revealed that well-known ROI-performance associations are either non-significant or reversed when accounting for the ROI's common association with
its corresponding network, and that the network as a whole is instead robustly associated with task performance. The results for the arithmetic task revealed that in
certain cases, an ROI can be robustly associated with task performance, even when accounting for its associated network. The SEM framework described in this study
provides researchers additional flexibility in testing brain-behavior relationships, as well as a principled way to combine ROI- and network-levels of analysis.

Introduction

Large publicly available datasets and a wide array of analytic tech-
niques provide a wealth of fMRI data for cognitive neuroscientists
interested in exploring individual differences. However, the proliferation
of analytic approaches makes the principled selection of one approach
over another challenging. Criticism of fMRI brain-behavior association
studies, particularly region-of-interest (ROI) based analyses (Vul et al.,
2009; Yarkoni, 2009; Yarkoni and Braver, 2010), highlight the potential
for misleading conclusions without a methodologically informed
approach. One often-overlooked issue in discussions of fMRI brain-
behavior associations is the choice of the level of analysis of the ‘brain’
variable (independent variable, IV) that is correlated with the ‘behav-
ioral’ variable (dependent variable, DV).

The level of analysis of fMRI data can extend from a single voxel, to a
brain region, to a network comprised of multiple brain regions, to all
voxels in the brain. Most studies to date have used blood-oxygen-level
dependent (BOLD) activation estimates at the level of an ROI, a region
hypothesized to be of relevance to the behavioral variable, as the brain
variable (e.g. Grabner et al., 2007; Hampson et al., 2006; Hubbard et al.,
2005; Molenberghs et al., 2016; Rypma & D'Esposito, 1999; Stephan
et al., 2003; Todd and Marois, 2005; Vossel et al., 2016). However, as
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observed in both resting-state and task-based activation studies, brain
regions do not function in isolation, but as parts of larger collections of
interacting brain regions that form networks (Bullmore and Sporns,
2009; Calhoun et al., 2008; Damoiseaux et al., 2006; Fox et al., 2005;
Smith et al., 2009). Thus, several recent studies have used network-level
brain variables to examine brain-behavior associations (Fornito et al.,
2012; Krmpotich et al., 2013; Leech et al., 2011; Misi¢ and Sporns, 2016;
Nelson et al., 2016). In this study, we attempt to bridge ROI- and
network-level BOLD activation estimates in a novel brain-behavior
analysis approach. We offer a simple structural equation modeling
(SEM) framework to formulate and test hypotheses regarding both re-
gion- and network-level brain-behavior associations simultaneously.
Properties of the functional organization of the human brain suggest
that analysis at both levels would be fruitful. Resting-state fMRI studies
have discovered a hierarchical functional organization of the human
brain (Bassett et al., 2008; Doucet et al., 2011; Ferrarini et al., 2009;
Meunier et al., 2010), in which smaller communities of brain regions are
nested within larger communities of brain regions, and so on. In addition,
this observed hierarchical structure has been associated with subject-
level behavioral variables. Suk et al. (2016) used a state-space model
with a deep learning algorithm for detecting hierarchical relationships
among ROIs to classify mild cognitive impairment patients versus healthy
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controls with greater accuracy than other conventional approaches.
Incorporating this observed hierarchical structure explicitly into an
approach for examining brain-behavior associations with activation es-
timates from task fMRI would be beneficial. Examination of both levels of
analysis can assist in determining whether neural activation at the ROI-
or network-level is most relevant for a given behavior. For example, it is
possible that ‘coarse’ network-level activation is more associated with
general attention performance in a visually-guided attention task, but
activation within a specialized ROI may be associated with performance
on a task requiring attention to human facial features specifically.

In a traditional ROI-based brain-behavior analysis, estimates derived
from a single ROI for each individual, such as BOLD activation during a
task block of interest, are correlated with a behavioral variable of interest
collected during the scan (e.g. task performance measures, such as ac-
curacy) or outside of the scanner (e.g. intelligence, age, or disease
severity). The inference that the ROI in question is uniquely associated
with the behavioral variable is contingent upon the assumption that
other relevant variables associated with either the ROI or behavioral
variable were taken into account; otherwise, an omitted-variable bias
may occur (Clarke, 2005). Importantly, the collinearity between the ROI
and the network of which it is a member should be considered when
estimating the ROI's association with a behavioral variable. In a
network-level brain-behavior association study, network-level estimates
derived from multivariate techniques (e.g. independent components
analysis or graph-theoretical techniques) are correlated with a behavioral
variable, with potential unique associations between the constituent
ROIs of the network and the behavioral indicator ignored. In order to
capture both of these levels of analysis we propose a novel brain-behavior
analysis in the form of an SEM model that incorporates insights from both
levels of analysis (ROI- and network level).

SEM has previously been used in fMRI to test hypothesized models of
associations among ROIs (Beaty et al., 2016; de Marco et al., 2009; Gates
et al., 2011; James et al., 2009; Karunanayaka et al., 2014; Kim et al.,
2007; Schlosser et al., 2006; Sturgeon et al., 2014; Zhuang et al., 2005).
For example, Kim et al. (2007) proposed a two-stage unified SEM plus
general linear model (GLM) approach for analyzing ROI functional con-
nectivity, incorporating both an SEM estimation stage for estimating
ROI-ROI path estimates, and a GLM stage that predicts the estimated path
coefficients from subject-level covariates (e.g. intelligence, age, gender,
etc.). Another related approach is dynamic causal modeling (DCM;
Friston et al., 2003), where the ROI-ROI path estimates are estimated by
the modulating effect of external inputs on state variables, which
included neuronal activity and other biophysical factors. These path
analysis models between observed ROIs represent a special case of SEM.
However, latent multivariate modeling features of the SEM approach are
rarely incorporated into fMRI analysis. In this study, we describe a
structural regression model incorporating network- and ROI-level
brain-behavior associations into a latent variable model. This frame-
work can be divided into two steps: a measurement component speci-
fying all constituent ROIs of an activation network as indicators of a
latent variable representing the larger network, and a structural model
separately estimating the association of the hypothesized ROI and acti-
vation network variable with a behavioral indicator. This framework
allows the researcher to estimate the unique association between ROI
activation and a behavioral indicator, by removing the separate associ-
ation between the overall network activation and the behav-
ioral indicator.

We illustrate this approach using a large neuroimaging dataset pro-
vided through the Human Connectome Project (HCP; Barch et al., 2013).
We applied the framework to three task datasets from the HCP that were
observed to have sufficient variability in task performance across par-
ticipants: an N-back working memory task, a relational processing task,
and an auditory arithmetic task. In order to predict brain-behavior re-
lationships, we chose tasks that had less than 100% accuracy for the
majority of participants. Behavioral performance in the working memory
task, relational task, and arithmetic task has traditionally been associated
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with activation in the dorsolateral prefrontal cortex (DLPFC; Barbey
et al., 2013; Barch et al., 1997; Owen et al., 2005; Rypma & D'Esposito,
1999), rostrolateral prefrontal cortex (RLPFC; Bunge et al., 2009;
Christoff et al., 2001), and bilateral temporo-parietal junction (TPJ;
Ansari, 2008; Butterworth and Walsh, 2011; Grabner et al., 2007, 2007),
respectively. However, to our knowledge, studies to date have only
considered these regions (or a small subset of regions) in isolation when
determining the association between task-activation estimates in these
brain areas and behavioral performance. This may be problematic, as the
DLPFC and RLPFC are considered components of a larger fronto-parietal
network (FPN), consisting of regions in the lateral prefrontal and poste-
rior parietal cortex (Cole et al., 2013; Power et al., 2011; Zanto and
Gazzaley, 2013). Additionally, the TPJ is often considered as a compo-
nent of the salience/cingulo-opercular network (S/CO), consisting of the
dorsal anterior cingulate cortex, anterior insular cortex, and inferior
parietal cortices (Gordon et al., 2016; Power et al., 2011). This raises the
possibility that the entire FPN or S/CO network, rather than an individual
network ROI, is a better predictor of task performance. To test this, we
simultaneously estimated the unique association between ROI (located in
the DLPFC, RLPFC, and TPJ) activation and task accuracy while ac-
counting for the relationship between overall FPN and S/CO network
activation within the SEM framework outlined above.

Methods and materials
Participants

Neuroimaging data from 207 non-twin, healthy, right-handed adults
(Mean age = 28.61 years (SD: 3.85, range: 22-36); 103 female) made
available through the HCP-2014 500 subject release were used for this
study. Participants were recruited from the area surrounding Washington
University (St. Louis, MO). All participants gave informed consent before
participating in the study, as described in Van Essen et al. (2013). Out of
the 207 total participants, 200 completed the working memory task, 197
completed the relational task, and 196 completed the auditory arithmetic
task. Data were collected over the course of several visits to the scanner
and made available to the public as a complete dataset.

Task descriptions

Complete task descriptions have been published by Barch et al.
(2013). All three tasks involved two alternating blocks of active and
control conditions. The active condition was designed to differ only from
the control condition with respect to the cognitive process of interest
(working memory for the working memory task, relational processing for
the relational task, arithmetic processing for the auditory task) so that
particular process is isolated from possible confounding processes, an
approach known as cognitive subtraction (Sternberg, 1969). The
behavioral variable of interest for each task was average accuracy (per-
centage of correct responses) during the condition of interest rather than
average reaction time, which did not differentiate between correct and
incorrect responses.

The working memory task was an N-Back task, a popular measure of
working memory which involves monitoring and in-time updating of
remembered information (Owen et al., 2005). The task consisted of two
runs of 0-back and 2-back blocks with faces, places, tools, and body parts
presented as stimuli. For each of the two runs, the four stimulus types
were presented in separate blocks. Half of the blocks within each run
consisted of a 2-back working memory task (active condition), where
participants indicated (through a press on a button box) whether the
current stimulus presentation was the same as the stimulus two pre-
sentations back. The other half of the blocks within each run consisted of
a 0-back working memory task (control condition), where participants
indicated (through a press on a button box) whether the current stimulus
matched a target cue presented at the start of each block. The behavioral
variable of interest from this task was accuracy (percentage of correct
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responses) on 2-back trials.

For the relational task, participants were presented with pairs of ob-
jects and told to distinguish them on participant or experimenter-
specified dimensions. The stimuli were six different shapes, each filled
with one of six textures. In the participant-specified blocks (active con-
dition), participants were presented with two pairs of objects (one pair at
the top of the screen, and the other pair at the bottom). Participants
decided what dimension differed across the top pair: shape or texture.
They then decided whether the bottom pair differed along that same
dimension. In the experimenter-specified blocks (control condition),
participants still saw the pair of objects on the top of the screen, but only
one object on the bottom. They also saw either the word “shape” or
“texture” in the middle of the screen and were asked to decide whether
the bottom object matched the top pair along that dimension. As with the
working memory task, the behavioral variable of interest from this task
was accuracy (percentage of correct responses) across all participant-
specified trials.

For the arithmetic task, participants were presented with interleaved
blocks of arithmetic and story conditions. While the original develop-
ment of this task was intended to study language processing, with the
story condition as an active condition and the arithmetic condition as a
control condition, the contrast was reversed to study arithmetic pro-
cessing. In the story condition (control condition), participants were
presented with brief auditory stories, followed by a 2-alternative forced-
choice question that asked participants about the topic of the story. In the
arithmetic condition (active condition), participants were aurally pre-
sented addition and subtraction problems (with varying degrees of dif-
ficulty), followed by a 2-alternative forced choice question for the correct
answer to the problem. To control for differences in numerical ability
across participants, the arithmetic condition was adaptive and main-
tained a similar level of difficulty across participants. As with the
working memory task and relational task, the behavioral variable of in-
terest from this task was accuracy (percentage of correct responses)
across all arithmetic trials.

Task fMRI acquisition and preprocessing

Acquisition and preprocessing procedures for the HCP pipeline have
been described in previous publications (Barch et al., 2013; Glasser et al.,
2013; Van Essen et al., 2013). Additional details about the acquisition
and preprocessing procedures are included in the Supplemen-
tary Materials.

ROI activation estimates

The brain variable of interest in the SEM analysis was participant-
level ROI activation estimates from subtraction contrasts for all three
tasks. The subtraction contrast represents the degree of voxel activation/
de-activation in the active condition relative to the control condition. We
used two independent whole-brain parcellation schemes for ROI selec-
tion and for specification of network membership to ensure the results
were not contingent upon a particular parcellation scheme. This was an
important reliability check to ensure that the results are robust across
various parcellations and network definitions. The 264 ROI parcellation
provided by Power et al. (2011) and the 333 ROI parcellation provided
by Gordon et al. (2016) are referred to in the main text as the ‘Power’ and
‘Gordon’ parcellation, respectively. We decided to use an a priori estab-
lished parcellation of nodes for two reasons: 1) we wanted to test our
analyses on regions that have previously been found to be correlated with
the cognitive process of interest, as opposed to defining these nodes from
task-activation patterns, and 2) we wanted to avoid the dangers of
‘double dipping’ by defining our nodes from activation estimates in the
task and then using the same ROI activation estimates for a
brain-behavior correlation (spurious correlations could result if variance
of the activation estimates is related to the accuracy scores; (Kriegeskorte
et al., 2009)). The Power et al. (2011) parcellation is a collection of 264
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spherical ROIs derived from meta-analytic task activation coordinates
and volume-based resting-state functional connectivity data. The Gordon
et al. (2016) parcellation is a collection of cortical gray-matter ROIs
derived from a boundary mapping technique applied to surface-based
resting-state functional connectivity data. For each participant,
subtraction-contrast estimates for all 264 ROIs (6 mm spheres) from the
Power parcellation and 333 ROIs from the Gordon parcellation (trans-
formed into volume space) were computed by averaging all voxel stan-
dardized estimates (i.e. participant-level subtraction contrasts) contained
in each ROL

We chose one ROI from each parcellation scheme (Fig. 1) for all three
tasks located in brain regions previously implicated in performance of
that particular task. These ROIs were chosen to determine if activation
estimates from ROIs previously implicated in performance of each task
significantly predict task performance above and beyond the association
between task performance and the entire network's activation estimates.
Note that each single ROI selected was a member of the larger network.
For the working memory task, an ROI in the right DLPFC was chosen
from each parcellation (Barbey et al., 2013; Owen et al., 2005; Rypma &
D'Esposito, 1999). For the relational task, an ROI in the left RLFPC was
chosen from each parcellation (Badgaiyan et al., 2002; Bunge et al.,
2009; Christoff et al., 2001). Both ROIs are components of the larger FPN
consisting of 23 and 24 other ROIs in the Power et al. (2011) and Gordon
et al. (2016) parcellations, respectively. For the auditory arithmetic task,
an ROI in the right TPJ was chosen from each parcellation (Ansari, 2008;
Butterworth and Walsh, 2011; Grabner et al., 2007, 2007; Price et al.,
2013). Previous studies have implicated both the right and left TPJ in
numerical cognition, but in the current data we chose the right TPJ, as
the ROIs from both parcellations in the left TPJ were not significantly
(p > 0.05) associated with task performance in the arithmetic task. The
right TPJ was a component of the salience network in the Power et al.
(2011) parcellation, consisting of 18 other ROIs, and a component of the
cingulo-opercular network in the Gordon et al. (2016) parcellation,
consisting of 40 other ROIs. Despite different labels, each network had
significant overlap in the spatial coordinates of each ROI (Fig. 1).

As we describe further in the Discussion, the choice of the hypothe-
sized ROI and the network parcellation are important decisions that must
be given serious consideration. This issue is not unique to the SEM
approach, but to all ROI-based analyses, such as seed-based functional
connectivity analyses (Cole et al., 2010) and activation-based ROI se-
lection (Poldrack, 2007). In fact, parameters provided for the measure-
ment model discussed below provide ways of testing for the adequacy of
the choice of network parcellation and hypothesized ROI. For example,
overall model fit statistics of the measurement model provide objective
criteria for determining which network parcellations are most appro-
priate for modeling the dependencies among ROIs within the network of
interest (e.g. FPN).

Structural equation modeling framework

As outlined above, the SEM framework for estimating ROI- and
network-level activation associations between behavioral performance in
the task proceeded in two steps: a measurement component and a
structural component. The measurement component consisted of a
confirmatory factor analysis (CFA) and the structural component con-
sisted of a path analysis that specified causal relationships between the
components of the measurement model and the behavioral indicator.
These types of SEM models are commonly referred to as structural
regression models. For the measurement component, each ROI in the
network was modeled as a linear function of latent network activation
plus ROI-specific activation combined with random error. Explicitly, the
measurement model represents the BOLD activation estimate of each
individual for an ROI in the network as a linear combination of network-
level activation (i.e. common factor) and ROI-specific activation (i.e.
specific factor plus random error):
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Fig. 1. Brain Regions of Interest in FPN and CO/S Network of Both Parcellations. Visualization of hypothesized ROIs and associated networks, the FPN and CO/S networks, on a
surface brain template (Xia et al., 2013). Power parcellation ROIs are displayed as spherical ROIs, and the Gordon ROIs are displayed as surface drawings (black). Hypothesized spherical
Power ROIs are distinguished from other spherical network ROIs by color (FPN: right DLPFC — blue, left RLPFC — green; CO/S: right TPJ — blue), and associated Gordon ROIs are the surface

regions that overlap with the hypothesized spherical ROIs.
Xij = 40 + b €8]

where X;; is the ROI activation estimate of the jth ROI for the ith indi-
vidual, }; is the factor loading describing the association between the jth
ROI and the network, 0; is the latent network activation for the ith indi-
vidual, and &;; is the ROI activation estimate of the jth ROI for the ith
individual unrelated to its activation due to the latent network.

In the structural component, associations between the network latent
variable and task performance, and between the chosen ROI and task
performance were estimated, specified by paths proceeding from the
network latent variable and hypothesized ROI variable to the behavioral
variable. These two parameter estimates represented the association
between network activation estimates and task performance, and the
association between the unique ROI activation estimates and task per-
formance, respectively. Explicitly, the structural model predicting task
performance from the network activation estimates and the unique ROI
activation estimates can be represented as:

Yi = ﬁlgi +ﬂ2Xl+ & (2)

where Y; is the task performance score for the ith individual, p; is the beta
weight relating the latent network activation estimate to task perfor-
mance scores, 0; is the latent network activation for the ith individual, py
is the beta weight relating the ROI network activation estimate to task
performance scores, X; is the ROI activation estimate for the ith individ-
ual, and ¢ is the disturbance for the ith individual.

Measurement model (Eq. (1))

The measurement model results provided an estimate of network
activation and unique ROI-specific activation. To fix the scale of the
latent variable, there are two commonly used approaches: 1) constrain a
chosen ROI-network factor loading to 1, or 2) constrain the variance of
the latent variable to 1. We chose the latter, as there was no a priori
indication of the most representative ROI of the network.

The adequacy of the hypothesized measurement model is assessed
using the magnitude of the network-ROI factor loadings and global fit
indices (Bentler, 2007; Fan et al., 1999; Iacobucci, 2010). Network-ROI
factor loadings (A in Eq. (1)) represent the association between across-
subject activation estimates of the ROI and the latent network variable.
Standardized network-ROI factor loadings typically vary from —1 to 1,
with larger values representing stronger negative and positive

associations, respectively. In some cases, factor loadings can exceed 1 in
absolute value when there is multicollinearity among the observed var-
iables (i.e. ROIs) that load on the factor. Constituent ROIs are expected to
have moderate to strong network-ROI factor loadings, as network models
assume that constituent ROIs of a network exhibit synchronous signal
dynamics. For this study, a conservative network-ROI factor loading
threshold was used (A > 0.5), such that ROIs with network-ROI factor
loadings below this threshold were removed from the network. This was
to check that the original ROI-network assignments of the Gordon and
Power parcellation were reflected in our data, and that adequate model
fit was obtained. Importantly, the choice of factor-loading cut-off did not
change the results of our analysis of the structural model (S2 Table).
Recommendations for factor-loading cut-offs vary between researchers
from as low as A > 0.3 to as high as A > 0.7 (Comrey and Lee, 1992; Hair
et al., 2013; MacCallum et al., 1999; Peterson, 2000). We recommend
that researchers consider the following when choosing factor loading cut-
offs: 1) the choice of factor-loading cut-off should be driven primarily to
achieve acceptable levels of overall fit for the measurement model, as
opposed to simply picking and choosing ROIs of interest, and 2) the
researcher should demonstrate that whatever cut-off is used to achieve
adequate levels of overall model fit, that this cut-off does not change the
main results of the analysis (as noted above, the chosen cut-off used
above does not affect the results of our analysis).

In every measurement model fitted below, several ROIs were allowed
to covary to achieve adequate overall levels of model fit. Covariances
among ROIs were allowed to covary in a data-driven manner by using the
modification indices provided by Mplus with the default critical value of
10 (i.e. chi-square change larger than 10 if the parameter is added to the
model). These modification indices are provided by Mplus for the orig-
inal model (with no covariance parameters) to guide modification of the
model to achieve higher levels of overall fit. Importantly, the structural
path estimates between the network/ROI and the behavioral indicator
were identical between the covariance-free and covariance-added model,
indicating that the network/ROI and behavioral variable relationships in
this study were robust to changes in this aspect of the measure-
ment model.

Structural model (Eq. (2))

The structural model estimated the overall network and ROI associ-
ation with task performance. Importantly, while the measurement model
was first considered separately, the final model included both



T. Bolt et al.

measurement model and task performance components estimated
simultaneously. Both the measurement and final model (including
structural components) were estimated with a Robust Maximum Likeli-
hood (MLR) estimator as implemented in Mplus software (Muthén and
Muthén, 2011). The MLR estimates values of the structural regression
model that maximize the likelihood between the estimated covariance
matrix and the observed covariance matrix. The observed covariance
matrix represents the observed unstandardized correlation between the
activation estimates for each pair of ROIs, the estimated covariance
matrix represents the unstandardized correlation between each pair of
ROIs implied by the model. The proposed model is illustrated by a path
diagram in Fig. 2. Example code for running this analysis in Mplus is
provided in the supplementary materials (S3 Example Code).

Four global fit indices were used to compared the overall fit of each
model to the data: root mean square error of approximation (RMSEA),
comparative fit index (CFI), Tucker-Lewis index (TLI), and the stan-
dardized root mean square residual (SRMR). Researchers have suggested
various fit index cut-off criteria for a ‘good fitting’ model (Byrne, 1998;
Hu and Bentler, 1999; Sugawara and MacCallum, 1993), but there is no
single optimal cut-off for all types of models (Chen et al., 2008). How-
ever, these conventional cut-off criteria as originally proposed by Hu and
Bentler (1999) are widely used: RMSEA < 0.06, CFI > 0.95, TLI > 0.95,
and SRMR < 0.08.

One consequence of the structural model illustrated in Fig. 2 is the
possibility of estimating an indirect effect between the latent network
variable and the behavioral variable through the hypothesized ROI of
interest. This is because the common association among the ROIs of the
network (including the hypothesized ROI) are modeled as arising
through the common causal relationship from the network to each ROI
(i.e. the directed arrows from the network to the ROIs), and the hy-
pothesized ROI is modeled as causally influencing the behavioral vari-
able. Thus, a possible indirect effect may be estimated, which can be
viewed as travelling from the network to the hypothesized ROI, and from
the hypothesized ROI to the behavioral variable. This would represent a
sort of ‘top-down’ influence of the network on ROI-behavior association,
which may be of interest in future applications of this model. However,
given the stated goal of the model to estimate unique network- and ROI-
level brain-behavior associations, the two direct effect parameters, from
the ROI to the behavioral variable and from the latent network variable
to the behavioral variable, are the only parameters of interest in this
application.

il

Network

Behavioral
Variable
(DV)

ROI2 [ eee

Fig. 2. Path Diagram of ROI-Network Structural Regression Model. Path diagram
illustrating the parameters estimated in the proposed structural regression model. The
measurement component corresponds to the left side of the figure, with paths proceeding
from the latent variable representing latent network activity (represented by an oval) to
each constituent ROI (represented by square boxes). The structural component corre-
sponds to the right side of the figure, with paths proceeding from both the latent network
variable and hypothesized ROI (e.g. ROI N) to the behavioral variable of interest (e.g. task
accuracy). The structural paths represent ‘causal’ paths from the latent network variable
and hypothesized ROI to the behavioral variable, and are distinct from the paths pro-
ceeding from the latent network variable to the ROIs in the measurement model (distin-

guished from the measurement model by thicker lines). Formal interpretations of each
parameter in the model are described in Eq. (1) and Eq. (2).
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This SEM framework was applied separately to the working memory,
relational and auditory arithmetic task datasets. In all three tasks, the
measurement component consisted of a CFA that modeled activation in
the constituent ROIs (including the hypothesized ROI) of the FPN or CO/
S network as a linear function of latent FPN or CO/S activation estimates.
For the working memory task and relational task, all ROIs of the FPN in
the Power (N = 25) and Gordon (N = 24) parcellation were included in
the analysis. For the arithmetic task, all ROIs of the S/CO network in the
Power (N = 18) and Gordon (N = 40) parcellation were included in the
analysis. The structural component consisted of a path analysis model
specifying causal relationships between the FPN or CO/S latent network
variable and task accuracy, and between the hypothesized ROI and task
accuracy. Results for the path coefficients were evaluated for significance
using a conventional alpha level (p < 0.05).

Results
Analysis of ROI-Behavior association

Accuracy scores reached acceptable average levels (i.e. above chance
— 50%) and demonstrated sufficient across-participant variability for the
working memory task (M = 81.94%, SD = 11.7%), relational task
(M = 64.02%, SD = 18.07%), and auditory arithmetic task (M = 82.15%,
SD = 9.67%). As sufficient across-participant variability in accuracy
scores is required in order to predict variability in these scores, we chose
tasks that had less than 100% accuracy for the majority of participants.
The data from all three tasks were then screened to check for outliers and
multivariate normality. Z-scores were used to determine whether uni-
variate outliers impacted the distribution of accuracy scores in the
working memory, relational and arithmetic tasks. For the relational and
arithmetic task, all z-scores were within 3 standard deviations from the
mean. For the working memory task, three of the participants had ac-
curacy scores with more than three standard deviations below the mean.
However, the skewness and kurtosis of working memory accuracy scores
was within the limits of a normal distribution (Skewness —0.95,
SE = 0.172; Kurtosis = 0.821, SE = 0.341), and examination of Cook's
difference scores (Cook and Weisberg, 1982) revealed that the three
scores did not constitute multivariate outliers.

To provide an initial assessment of the ROI-behavior association
without implementation of the SEM framework, a simple Pearson corre-
lation was computed between the hypothesized ROIs and task accuracy
for all three tasks. Consistent with previous studies, activation estimates
of the hypothesized ROIs from both parcellations were significantly
positively correlated with task accuracy. For the working memory task,
there was a significant positive association between activation estimates
in the right DLPFC and 2-back accuracy (Power: r(198) 0.33,
p < 0.0001; Gordon: r(198) = 0.36, p < 0.0001). For the relational task,
there was a significant positive association between the activation esti-
mates in the left RLPFC and relational accuracy (Power: r(195) = 0.15,
p = 0.03; Gordon: r(195) = 0.22, p = 0.0018). For the auditory arithmetic
task, there was a significant positive association between activation es-
timates in the right TPJ and arithmetic accuracy (Power: r(194) = 0.18,
p = 0.01; Gordon: r(194) = 0.27, p = 0.0001).

ROI-network dependencies

The ROI-behavior associations indicate a relationship between ac-
tivity in these regions of the brain and task performance. However, a
Pearson correlation (zero-order correlation) between a single ROI and
task performance fails to account for the dependencies among ROIs of the
same network. To illustrate the dependencies among ROIs across the
whole-brain and within networks, we computed a whole-brain correla-
tion matrix representing the across-subject Pearson correlations between
all 264 ROIs of the Power parcellation and 333 ROIs of the Gordon
parcellation. As illustrated in Fig. 3, there are strong dependencies across
many ROIs of the cortex, particularly in ROIs of the same network.
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SEM results

To account for the common associations between the hypothesized
ROIs (right DLPFC, left RLPFC, and right TPJ) and other ROIs of the FPN
and CO/S network, we implemented a latent variable SEM framework. As
described above, the SEM framework involved a structural regression
model with two components: a measurement component modeling
network activity as a latent variable with the constituent ROIs of the
network as indicators, and a structural component modeling the unique
association of both the latent network and hypothesized ROI activation
estimates with task accuracy. First, the measurement model was esti-
mated to determine the relationship between each hypothesized ROI and
its corresponding overall latent network (FPN or CO/S). After the mea-
surement model was checked for possible low loading ROI-network paths
(4 < 0.5), the structural model, including the paths from the network and
hypothesized ROI to task accuracy, were added and the full model
was estimated.

The SEM structural regression approach was first applied to the
working memory task. This tested whether the original association be-
tween the right DLPFC and task accuracy holds after considering the right
DLPFC's common association with other ROIs of the FPN. In addition, the
model estimated the association between overall FPN activation esti-
mates and task accuracy. First, a CFA model was fit to the data with all
ROIs (n = 25 for the Power parcellation; n = 23 for the Gordon parcel-
lation) of the FPN, including the ROI in the right DLPFC, as indicators of a
latent FPN variable, representing overall FPN activity. Examination of the
network-ROI factor loadings (Table 1), representing the correlation be-
tween activation estimates of the FPN and constituent ROIs, revealed that
all ROIs for both parcellations had strong loadings on the FPN latent
variable (4 > 0.5, p < 0.0001), excluding two ROIs from the Gordon
parcellation, which were removed from the model due to their weak ROI-
Network loadings (4 < 0.5). Thus, activation estimates within each of the
ROIs had a strong association with overall activation estimates in the
FPN. After adding residual covariance parameters between several of the
ROIs (ratio of number of covariance parameters added to possible
number of covariance parameters: Power = 49/300; Gordon = 58/231),
the hypothesized model achieved acceptable levels of overall fit for both
the Power (RMSEA = 0.059; SRMR = 0.041; CFI = 0.96; TLI = 0.947) and
Gordon parcellations (RMSEA = 0.062; SRMR = 0.039; CFI = 0.971;
TLI = 0.957). The final model with both measurement and structural
components (paths added between the hypothesized ROI/FPN and task
accuracy) was then fit to the data (Fig. 4). For both parcellations, the
results of the final model (standardized results) revealed that the FPN
was strongly positively associated with 2-back accuracy (Power:
B = 0.522, SE = 0.099, p < 0.0001; Gordon: B = 0.532, SE = 0.123,
p < 0.0001). In contrast to the analysis between the right DLPFC and 2-
back accuracy, activation estimates in the right DLPFC in the structural
model were no longer significantly associated with 2-back accuracy
(Power: B —0.109, SE = 0.129, p = 0.4; Gordon: B -0.1,
SE = 0.129, p = 0.44).

The SEM structural regression approach was then applied to the
relational task. Examination of the network-ROI factor loadings (Table 1)
revealed that all ROIs for both parcellations had strong loadings on the
FPN latent variable (A's > 0.5, p's < 0.0001). After adding residual
covariance parameters between several of the network ROIs (ratio of
number of covariance parameters added to possible number of covari-
ance parameters: Power = 46,/300; Gordon = 36/276), the hypothesized
model achieved acceptable levels of overall fit for both the Power
(RMSEA = 0.061; SRMR = 0.036; CFI = 0.966; TLI = 0.955) and Gordon
parcellations (RMSEA 0.061; SRMR 0.031; CFI 0.971;
TLI = 0.962). The final model with both measurement and structural
components (paths added between ROI-FPN and task accuracy) was then
fit to the data (Fig. 4). Similar to the working memory task, the results of
the final model revealed a different interpretation of the relationship
between activation estimates in the left RLPFC and relational accuracy
than the original analysis with a single ROI. For both parcellations, the
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results of the final model revealed that the FPN was strongly positively
associated with relational accuracy (Power: B = 0.697, SE = 0.077,
p < 0.0001; Gordon: B = 0.53, SE = 0.095, p < 0.0001). In contrast to the
original positive correlation, activation estimates in the left RLPFC had a
weak negative association with relational accuracy in the Power parcel-
lation (B = —0.377, SE = 0.09, p < 0.0001), and a non-significant
negative association in the Gordon parcellation (B = - 0.19,
SE = 0.047, p = 0.085).

The SEM structural regression approach was then applied to the
auditory arithmetic task. Examination of the network-ROI factor loadings
(Table 1) revealed that many ROIs for the Power (n = 14) and Gordon
(n = 34) parcellations had strong loadings on the Salience, and Cingulo-
Opercular network latent variable (4's > 0.5, p's < 0.0001), respectively.
Four ROIs of the Power parcellation, and six ROIs of the Gordon par-
cellation did not exhibit strong network-ROI factor loadings (4 < 0.5) and
were excluded from further analyses. Of note, the right TPJ in the Power
parcellation was marginally below the network-ROI factor loading
threshold (1 = 0.494), but was maintained in the model as this was the
hypothesized region of interest. After adding residual covariance pa-
rameters between several of the network ROIs (ratio of number of
covariance parameters added to possible number of covariance param-
eters: Power = 8/91; Gordon = 80/595), the hypothesized model ach-
ieved acceptable levels of overall fit for both the Power (RMSEA = 0.053;
SRMR = 0.042; CFI = 0.969; TLI = 0.96) and Gordon parcellations
(RMSEA = 0.055; SRMR = 0.057; CFI = 0.943; TLI = 0.928). The final
model with both measurement and structural components (paths added
between ROI-CO/S and task accuracy) was then fit to the data (Fig. 4).
For both parcellations, the results of the final model revealed that the
overall network activation estimates were not significantly associated
with arithmetic accuracy (Power: B = 0.071, SE = 0.079, p = 0.368;
Gordon: B = - 0.022, SE = 0.092, p = 0.807). In agreement with the
earlier results, a positive association with activation estimates in the right
TPJ and arithmetic accuracy remained in the Gordon parcellation
(B =0.287, SE = 0.094, p = 0.002), though the positive association with
activation estimates in the right TPJ and arithmetic accuracy was non-
significant in the Power parcellation (B 0.145, SE 0.079,
p = 0.064). This is in direct contrast to the findings for the auditory
arithmetic and working memory tasks, which revealed an overall
network activation estimate which had a distinct impact on the original
Pearson correlation.

Discussion

In this study, we demonstrate the utility of an SEM framework for
incorporating region- and network-level brain-behavior associations in a
single model. This framework allowed us to estimate the unique contri-
bution of hypothesized ROIs, and compare those associations with the
contribution of the overall network. Applied to three separate task-fMRI
datasets, we found that the approach yielded fundamentally different
insights into brain-behavior correlates compared with a traditional ROI
brain-behavior correlation. For the working memory and relational task,
we found that the unique associations between hypothesized ROIs and
task accuracy were negative once the corresponding network influence
was controlled, and that the network activation significantly predicted
task accuracy. In the auditory arithmetic task, the association between
the hypothesized ROI and task accuracy was maintained even when ac-
counting for its common association with its network, and network
activation estimates were not robustly predictive of task accuracy.

These findings illustrate the importance of accounting for de-
pendencies among levels of analyses, as well as the unique insights
offered by each level considered separately. Previous fMRI studies of
working memory processes (Barbey et al., 2013; Barch et al., 1997; Curtis
& D'Esposito, 2003; Owen et al., 2005; Rypma & D'Esposito, 1999) have
generally implicated either a single ROI (e.g. DLPFC) or other sets of ROIs
associated with the FPN. The SEM framework applied to the working
memory dataset incorporated both aspects in a single model, and
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Table 1
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Network-ROI Factor Loadings for All Three Tasks Across Power and Gordon Parcellations. (1 = factor loadings; WM = Working Memory Task). Table of factor loadings for each ROI
across both parcellations, representing the correlation of overall activation estimates of the FPN (for working memory and relational task) and CO/S network (for arithmetic task) with ROI
activation estimates, as well as associated standard errors (all p's < 0.0001). Of note, these are the factor loadings after the covariance parameters were added the measurement model. The

hypothesized ROIs from each parcellation for each task are presented in bold letter.

Power Parcellation

Gordon Parcellation

WM Relational Arithmetic WM Relational Arithmetic
ROI A SE ROI A SE ROI A SE ROI A SE ROI bS SE ROI s SE
1 0.776 0.029 1 0.739 0.032 1 0.512 0.062 1 0.565 0.066 1 0.791 0.031 1 0.709 0.038
2 0.768 0.03 2 0.835 0.025 2 0.494 0.068 2 0.721 0.036 2 0.718 0.043 2 0.695 0.045
3 0.689 0.044 3 0.796 0.027 3 0.571 0.056 3 0.839 0.022 3 0.885 0.016 3 0.742 0.03
4 0.721 0.039 4 0.839 0.021 4 0.542 0.064 4 0.765 0.041 4 0.792 0.025 4 0.664 0.044
5 0.713 0.041 5 0.825 0.025 5 0.661 0.042 5 0.732 0.03 5 0.872 0.017 5 0.595 0.05
6 0.616 0.05 6 0.783 0.029 6 0.715 0.044 6 0.609 0.049 6 0.844 0.021 6 0.506 0.052
7 0.538 0.055 7 0.553 0.055 7 0.638 0.055 7 0.818 0.027 7 0.807 0.023 7 0.59 0.048
8 0.645 0.048 8 0.566 0.06 8 0.728 0.039 8 1.064 0.071 8 0.656 0.044 8 0.736 0.038
9 0.786 0.029 9 0.857 0.022 9 0.751 0.038 9 0.607 0.068 9 0.797 0.033 9 0.698 0.043
10 0.749 0.033 10 0.828 0.024 10 0.834 0.025 10 0.652 0.041 10 0.867 0.021 10 0.652 0.051
11 0.607 0.05 11 0.795 0.026 11 0.809 0.033 11 0.874 0.022 11 0.822 0.028 11 0.65 0.043
12 0.712 0.037 12 0.754 0.037 12 0.701 0.042 12 0.752 0.033 12 0.771 0.03 12 0.576 0.055
13 0.849 0.023 13 0.85 0.023 13 0.544 0.06 13 0.831 0.024 13 0.895 0.016 13 0.548 0.061
14 0.773 0.032 14 0.83 0.025 14 0.587 0.057 14 0.951 0.054 14 0.729 0.032 14 0.571 0.054
15 0.85 0.023 15 0.893 0.026 15 0.882 0.017 15 0.887 0.022 15 0.688 0.046
16 0.85 0.024 16 0.881 0.017 16 0.749 0.035 16 0.837 0.024 16 0.707 0.042
17 0.803 0.026 17 0.855 0.02 17 0.726 0.03 17 0.877 0.02 17 0.637 0.05
18 0.836 0.024 18 0.902 0.014 18 0.807 0.028 18 0.882 0.018 18 0.745 0.035
19 0.832 0.024 19 0.841 0.02 19 0.804 0.026 19 0.726 0.04 19 0.619 0.053
20 0.772 0.032 20 0.802 0.032 20 0.707 0.054 20 0.735 0.037 20 0.757 0.037
21 0.716 0.032 21 0.766 0.026 21 0.888 0.017 21 0.696 0.043 21 0.509 0.066
22 0.761 0.028 22 0.8 0.03 22 0.64 0.056 22 0.853 0.021 22 0.657 0.051
23 0.668 0.046 23 0.648 0.039 23 0.918 0.013 23 0.636 0.051
24 0.8 0.031 24 0.873 0.017 24 0.838 0.023 24 0.655 0.051
25 0.861 0.021 25 0.892 0.015 25 0.668 0.048
26 0.592 0.061
27 0.67 0.04
28 0.696 0.046
29 0.691 0.043
30 0.623 0.056
31 0.683 0.046
32 0.709 0.038
33 0.546 0.055
34 0.713 0.041

revealed that right DLPFC activation is subsumed by overall activity in
the FPN. Previous fMRI studies of relational processing (Badgaiyan et al.,
2002; Bunge et al., 2009; Christoff et al., 2001) have implicated the left
RLPFC as uniquely related to relational task processing. But as demon-
strated by application of the SEM framework, the original positive as-
sociation between left RLPFC activation estimates and task performance
was reversed when accounting for its association with the FPN in the
Power parcellation (this reversal was non-significant in the Gordon
parcellation, p = 0.085). Overall, these results suggest that the unit of
behavioral significance in the brain for these specific cognitive control
tasks, and possibly for others, is the FPN, rather than a single ROI within
this network. The auditory arithmetic task provides an instance of a case
when the hypothesized ROI, the right TPJ, is uniquely related to task
performance, as opposed to its entire associated network. In this case, the
unique activity of the right TPJ in the Gordon parcellation (this associ-
ation was non-significant in the Power parcellation, p = 0.064) is related
to task accuracy while its associated network is not. Thus, under some
circumstances the ROI-specific activation maintains a unique relation-
ships with task performance, even when controlling for the relationship
with its associated network. However, these results are dependent on
carefully choosing the ROI (as in all ROI analyses; Poldrack, 2007), as the
relationship between the hypothesized ROI in the Power parcellation and
task-performance was non-significant (p = 0.064). This may be due to the
fact that the right TPJ in the Power parcellation did not have a strong
association with its associated network (1 = 0.494).

Several studies have demonstrated that task co-activation patterns
form networks of co-varying brain regions, similar to those observed in

resting-state fMRI (Crossley et al., 2013; Laird et al., 2013; Smith et al.,
2009). A similar pattern of network structure was observed among the
ROI task co-activation patterns for the three tasks used in the current
study (Fig. 3). The results of the SEM framework applied to the three
tasks demonstrate the importance of assessing both networks of ROIs and
individual ROIs and their relationships to behavioral variables of interest
(Leergaard et al., 2012; Poldrack and Farah, 2015). The SEM framework
explored here provides a simple approach for parsing the unique con-
tributions of ROI- and network-level activity. This approach operates by
modeling the common associations among regions of the same network,
and simultaneously estimating the unique contributions of both the
overall network and the hypothesized ROI to a behavioral variable
of interest.

While the SEM framework in this study was applied to task fMRI data,
individual differences in resting-state functional connectivity estimates
between hypothesized ROIs are an increasingly popular source of brain
data for studies of brain-behavior relationships (Aghajani et al., 2014;
Disbrow et al., 2014; Hampson et al., 2006; Krmpotich et al., 2013;
Vossel et al., 2016; Wang et al., 2007). Analogous to the concerns of ROI-
network dependencies in task-activation data, functional connectivity
relationships between hypothesized ROIs may be dependent on re-
lationships among larger networks of regions. The SEM framework in this
study operated on across-subject correlations in ROI task-activation esti-
mates at the between-subject level, while resting-state functional connec-
tivity estimates are commonly estimated at the within-subject level.
Applications of the SEM framework on within-subject resting-state
functional connectivity estimates would require an extension of the SEM
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Fig. 4. Parameter Estimates of Structural Regression Model. (FPN = Fronto-Parietal Network, CO/S = Cingulo-opercular/Salience Network). Path diagrams with standardized
parameter estimates (standard errors presented in parentheses) for two paths: 1) the path between the latent network variable and task accuracy, representing the unique association
between overall activation estimates in the FPN or CO/S network and task accuracy, and 2) the path between the hypothesized ROI (right DLPFC/left RLPFC/right TPJ) and task accuracy,
representing the association between residual activation estimates in the ROI (activity due to association with the network removed) and task accuracy. Power parcellation estimates are
presented in blue, and Gordon parcellation estimates are presented in red.
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framework to multi-level data: estimates at the within-subject level would
need to be extended to the between-subject level to predict individual
differences, accounting for both within- and between-subject variability.
Fortunately, software for multi-level SEM approaches are widely avail-
able (Preacher et al., 2010; Rabe-Hesketh et al., 2004; Toit & Toit, 2008).
Future studies are needed to determine the applicability of this SEM
framework to resting-state functional connectivity-based brain-behavior
relationships.

Limitations

The results of the SEM approach here highlight the need for ac-
counting for the hierarchical functional organization of the human brain
when conducting brain-behavior associations in task fMRI. However, this
approach is still limited to hypothesis-driven research, requiring re-
searchers to specify a priori the brain regions of interest that are associ-
ated with task performance. This requires informed choices by the
researcher based on previous findings and well-reasoned hypotheses, as
opposed to a more data-driven approach. In addition, this requires an a
priori specification of ROI-network membership, where the hypothesized
ROI along with all other ROIs in its associated network are included in
the model. This can perhaps be best derived from previous fMRI par-
cellation studies (Bassett et al., 2008; Meunier et al., 2010; Yeo et al.,
2011), including the ones used in this study (Gordon et al., 2016; Power
et al., 2011). This is a non-trivial choice, as the creation of the network
latent variable is dependent on the chosen ROIs that constitute the
network. This is the primary reason that two network parcellations were
used in the current study (Gordon et al., 2016; Power et al., 2011). As
shown in the arithmetic task, different parcellation schemes can some-
times yield different results in terms of the significance (p < 0.05) of the
path estimates. Rather than using an a priori parcellation, data-driven
estimation techniques on one's own data (e.g. ICA) may provide more
robust estimations of network-ROI membership for future applications of
this SEM approach. Related to this issue, is the well-noted fact that
multiple SEM models can fit the data equally well (Hu and Bentler, 1998;
Iacobucci, 2010; Steiger, 2007). This highlights the importance of hy-
pothesis-driven applications of the SEM framework to brain-behavior as-
sociation studies. Adjudicating between different models requires that
researchers also discern the neurobiological meaning of these models,
such that relationships among model variables are theoreti-
cally grounded.

As noted above, several covariance parameters were added to the
ROI-Network measurement model to achieve adequate levels of model
fit. Though the common network membership accounts for the majority
of variance in the ROIs, the addition of covariance parameters to the
model indicate there are extra dependences in the model not accounted
for by network membership. These extra dependencies among ROIs
could possibly be the result of spatial dependencies between nearby
ROIs, homologous ROIs from the right and left hemisphere, or ‘sub-net-
works” within the overall network. Though these are captured by the
added covariance parameters, future applications of this approach may
choose to more systematically account for these dependencies with extra
path estimates, or possibly a bi-factor CFA model that models a general
factor, and sub-factors within this factor (Reise, 2012; Reise et al., 2007).

Conclusions

Here we demonstrate the importance of accounting for both ROI- and
network-levels of analysis in studies of brain-behavior relationships. The
contributions of multiple levels of analysis in the brain should be taken
into consideration when predicting individual differences in behavior
from fMRI data. Additional research is needed to understand how these
different levels of analysis in the brain interact, and how they differen-
tially contribute to cognitive processes and behavioral outcomes. An
understanding of what level of analysis contributes most to a behavioral
outcome of interest is particularly important for those researchers
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concerned with subject-level fMRI biomarkers for clinical and disease
outcomes. We believe that the framework described in this study will
allow researchers additional flexibility in testing of brain-behavior re-
lationships, as well as a principled way to combine ROI- and network-
levels of analysis.
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