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Abstract 

Audio-visual recording and location tracking produce enormous quantities of digital data with 

which researchers can document children’s everyday interactions in naturalistic settings and 

assessment contexts. Machine learning and other computational approaches can produce 

replicable, automated measurements of these big behavioral data. The economies of scale 

afforded by repeated automated measurements offer a potent approach to investigating linkages 

between real-time behavior and developmental change. In our work, automated measurement of 

audio from child-worn recorders—which quantify the frequency of child and adult speech and 

index its phonemic complexity—are paired with ultrawide radio tracking of children’s location 

and interpersonal orientation. Applications of objective measurement indicate the influence of 

adult behavior in both expert ratings of attachment behavior and ratings of autism severity, 

suggesting the role of dyadic factors in these “child” assessments. In the preschool classroom, 

location/orientation measures provide data-driven measures of children’s social contact, fertile 

ground for vocal interactions. Both the velocity of children’s movement toward one another and 

their social contact with one another evidence homophily: children with autism spectrum 

disorder, other developmental disabilities, and typically developing children were more likely to 

interact with children in the same group even in inclusive preschool classrooms designed to 

promote interchange between all children. In the vocal domain, the frequency of peer speech and 

the phonemic complexity of teacher speech predict the frequency and phonemic complexity of 

children’s own speech over multiple timescales. Moreover, children’s own speech predicts their 

assessed language abilities across disability groups, suggesting how everyday interactions 

facilitate development. 

Key words: machine learning, objective, automated measurement, interaction, development, 

audio, radio frequency identification, language, social, deep learning.  
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Computational Approaches to Understanding Interaction and Development 

New sensing technologies such as first-person recordings that capture video from a 

child’s first-person perspective are becoming increasingly common in developmental research 

(Gonzalez Villasanti et al., 2020; C. Yu & Smith, 2016; Yurkovic et al., 2021). There is 

tremendous interest in deploying both audiovisual recorders and newer sensors in naturalistic and 

semi-naturalistic environments (“in the wild”) to understand children’s day-to-day interactions. 

These sensors, however, can produce overwhelming quantities of recorded multimodal data. At 

the same time, new computational approaches, including machine learning and modeling tools 

from statistical physics are detecting meaningful patterns in these multimodal data. The efficient 

computational measurement and rendering of sensing data is sometimes termed behavior 

imaging (Rehg, 2011). Use of the term emphasizes that understanding real-time developmental 

processes has the same conceptual importance and requires the same level of computational rigor 

as neural imaging.  

Behavior imaging has the potential to create new insights into children’s behavior and 

development by opening previously intractable fields of inquiry. Examples abound. 

Visualizations of the temporal sequences of infants and their parents handling and gazing at 

objects are changing our understanding of joint attention and word learning (C. Yu & Smith, 

2016; Yurkovic et al., 2021). Bootstrapped sequences of observed behaviors demonstrate the 

emergence of emotion regulation (gazing away from the parent during a smile) between three 

and six months (Yale et al., 2003). Likewise, Ruvolo et al. (2015) used an information theoretic 

perspective to demonstrate the emergence of infant-mother turn-taking over developmental time. 

Moreover, computations from statistical physics, as we detail below, allow for the detection of 

sociality from children’s location and orientation without the use of machine learning (Messinger 
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et al., 2019). A specific behavior imaging approach, machine learning, has been key to 

understanding children’s behavior and interactions as recorded with audio, video, and other 

sensors. 

Machine Learning  

Shallow and deep learning 

 Machine learning refers to algorithms that successively reprocess data into more abstract 

and compact forms (LeCun et al., 2015). Deep learning has led to a revolution in the flexibility 

and accuracy of machine learning. In conventional or shallow learning, algorithms are provided 

with selected features of sensor data (fundamental pitch contours from an audio signal, for 

example). In deep learning, multiple layered neural networks iteratively abstract information 

more directly from sensor data (e.g., the audio signal itself). A historical example is illustrative. 

In 2009, Messinger et al. predicted infant smiling using a one-dimensional support vector 

machines from the output of manifolds of face image data (shallow learning). By contrast, in 

2021, Ertugrul et al. reliably detected infant smiling using a deep neural network directly from a 

video model of the infant's face.  

Unsupervised machine learning 

In addition to being shallow or deep, machine learning may be supervised or 

unsupervised. Unsupervised machine learning algorithms detect high level patterns in raw data, 

in a fashion metaphorically akin to exploratory factor analysis. Using separate videos of the faces 

of mothers and infants during their face-to-face interactions, for example, we used an 

unsupervised branch-and-bound procedure to detect correspondences between the facial 

expressions of each partner (Chu et al., 2017). Without prior training, this machine learning 

framework detected commonalities in infant and parent smiling from raw video.  
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Supervised machine learning 

Measuring behavior. In the current chapter (and in developmental research more 

generally), the primary use of supervised machine learning is the measurement of behavior 

(Rehg, 2011; Rehg et al., 2014). Supervised algorithms are provided with labeled or annotated 

sensor data. They receive as input, for example, audio clips that are labeled as vocalizations (and 

non-vocalizations) or video segments labeled as smiles (and non-smiles). From this input, 

algorithms learn multilinear or nonlinear correspondences between sensor data and labeled 

behaviors. Finally, the machine learning algorithm—or sets of interlocking algorithms—are 

applied to new, unseen data to measure behavior. Throughout the chapter, we refer to the use of 

supervised machine learning to label sensor data as objective or automated measurement. 

Predicting behavior. Machine learning can also be used to predict (to learn) future 

behavior based on sequences of past behavior. Examining early face-to-face interactions, for 

example, we found that both infants’ smile initiations and terminations were most predictable 

when the infants themselves (rather than the mother) had most recently smiled or stopped 

smiling (Messinger et al., 2010). By contrast, mother smile initiations were most predictable in 

response to an infant smile. At the end of this chapter, we explore the potential of unsupervised 

machine learning to predict children’s vocalizations with peers in social interactions.  

The current chapter 

Computational modeling of objectively measured social behavior is the focus of this 

chapter. We begin by considering how computational methods can help us understand 

development and developmental disabilities. Then we consider objective approaches to 

understanding attachment and predicting autism symptom levels. The bulk of the chapter is 

concerned with children’s language, social behavior and development in a ubiquitous naturalistic 
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setting, the preschool classroom. We end the chapter by considering new directions for research 

in behavior imaging. 

The Nested Timescales of Development 

We are accustomed to studying behavior at a timescale of minutes and seconds while we 

assess developmental change over months and years. But developmental change occurs over all 

these nested timescales. What appear to be small changes in the context of tremendous minute-

to-minute and day-to-variation yield striking growth curves over months of observation (Fogel & 

Thelen, 1987; Smith & Thelen, 2003; Spencer et al., 2011). The frequency and content of pre-

linguistic infants’ vocalizations during a brief observation, for example, vary as a function of the 

contingency with which their caregivers respond to specific vocalizations within minutes 

(Goldstein et al., 2009). Changes in vocalizations also unfold over longer timescales as infants 

gain new skills through the frequent repetition of vocal interactions in real time (Gilkerson & 

Richards, 2009; Paul et al., 2011). Measuring the interplay of behavior at multiple timescales 

requires repeated measurements of second-to-second real-time interaction over weeks and 

months. The economies of scale afforded by objective measurement are critical to making the 

study of child development at multiple timescales a tractable problem.  

Computational approaches to developmental disabilities  

Computational approaches to the study of child development are central to understanding 

individual differences, including those related to developmental disabilities. Developmental 

disabilities are life-altering impairments in motor, learning, behavioral, or communicative 

functioning. Karmiloff-Smith (2018) argues that understanding overlapping developmental 

cascades at multiple times scales is key to understanding atypical outcomes. The reverse is also 

true. Careful attention to real-time processes that support developmental change can reveal 
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similarities between children with and without developmental disabilities.  

Autism spectrum disorder (ASD), is a high prevalence developmental disability 

characterized by social communication deficits and restricted and repetitive behaviors (American 

Psychiatric Association, 2013), which is a focus of our research. Another research focus, hearing 

loss (HL), limits access to auditory stimuli and spoken language input, which impacts children’s 

developing language and literacy abilities (Blamey et al., 2001; Johnson & Goswami, 2010; 

Lund et al., 2015; Moeller et al., 2007; Niparko et al., 2010; E. A. Walker & McGregor, 2013). 

Both ASD and HL, as well as other developmental disabilities (O-DD) frequently have cascading 

consequences on children's long term development (Bat-Chava & Deignan, 2001; Hoffman et al., 

2014; Ingvalson et al., 2020; Nittrouer et al., 2012).  

We apply computational approaches both to the study of children with developmental 

disabilities and more typically developing (TD) children. An advantage of this strategy is that 

objective measurement allows researchers to temporally characterize behaviors and symptoms 

rather than simply noting their presence. Computer vision analyses of head movement applied to 

an early behavioral symptom of autism, for example, indicated delayed head turning in response 

to name (Campbell et al., 2019). Thus, computational approaches can quantify behavioral indices 

of a developmental disorder (latency to head turn) rather than relying on all-or-none ratings  of 

its presence. Below we turn to a brief characterization of some of the computational 

measurement tools we have employed to characterize children’s and adult’s vocalizations in our 

research on attachment, ASD, and interactive behavior in schools (IBIS).  

Tools of the trade: LENA 

The Language ENvironment Analysis (LENA) system is commonly used by 

developmentalists to quantify the frequency of child and adult vocalizations occurring during 
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children’s daily interactions (Gilkerson & Richards, 2009; Xu et al., 2009). The LENA system 

allows for efficient acquisition and automated analysis of day-long audio recordings from child-

worn recorders. LENA is lightweight and fits within a pocket on the chest of custom-made vests 

and t-shirts making it easy to use in a variety of everyday settings, including children’s homes, 

assessment settings, and preschool classrooms. LENA algorithms employ shallow machine 

learning, pre-trained Gaussian Mixture Models (GMMs) to detect speech, distinguish between 

speakers, and characterize speech. LENA specifically distinguishes between the speech of the 

focal child wearing the LENA recorder, and between other children and adults who are proximal 

to the focal child. In our research, we utilize LENA algorithms to classify focal child speech as 

speech-related (any phonemic content) or as fixed signals (e.g., crying), and to quantify the rate 

of these vocalizations.  

Comparisons of LENA algorithms to expert human coders evidence moderate reliability 

with expert coders’ classification of speech (Soderstrom & Wittebolle, 2013). Although LENA 

reliably estimates the relative quantity of focal child and adult speech, recent reports raise 

concerns about LENA reliability and misspecification of who is speaking (Cristia et al., 2021). 

To guard against misclassification, our research team outfits all children in a classroom with 

LENA recorders. Only vocalizations recorded from a child’s own recorder are used to quantify 

child vocalizations. In addition, we assess the reliability of LENA classifications in the contexts 

we are studying. Using LENA-identified child and adult vocalizations, trained coders blind to 

LENA’s designations listen to and classify individual vocalization segments as either belonging 

to a child or an adult. We find high levels of agreement (and Cohen’s Kappa) between human 

and LENA categorizations of speech as child speech or adult speech in preschool inclusion 

classrooms for children with hearing loss, children with ASD, and children with other 
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developmental delays (O-DD; Fasano et al., 2021; Mitsven et al., 2021; Perry et al., 2021), 

suggesting the validity of these machine learning classifications. Perhaps more importantly, we 

and others find consistent associations between LENA’s estimates of children’s vocalizations 

and their language development outcomes (Dykstra et al., 2013; Gilkerson et al., 2018; Mitsven 

et al., 2021; Perry et al., 2018; Wang et al., 2020). 

Tools of the Trade: Sphinx Phoneme Detection 

While LENA quantifies vocalizations, it is based in part on Sphinx, an evolving software 

package that provides a window into vocalization quality (Walker et al., 2004; 

https://cmusphinx.github.io/). One measure of vocalization quality is the number and variety of 

phonemes vocalizations contain. Quantifying the phonemes present in children’s vocalizations 

can provide insight into their expressive language development. We automatize the detection and 

estimation of the phonemic make-up of child and adult speech using Sphinx software. Sphinx 

uses Hidden Markov Models (HMM) to detect and quantify the number of consonants and 

vowels present within vocalizations (e.g., average count per utterance (ACPU; Lamere et al., 

2003). Sphinx HMM estimates phonemes by mapping the speaker’s specific production of the 

vocal signal to a best-fitting latent internal state that characterizes the probability of a given 

phoneme. Previous and subsequent internal states (generated sequentially in analyzing a 

vocalization) are employed to predict the current phoneme. In an overly simplified example, an 

internal state with a high weighting of the consonant /b/ might render a subsequent internal state 

with a high weighting of /i/ more probable. 

Sphinx estimates of ACPU exhibit high concordance with human transcriptions of ACPU 

in child speech samples (Xu et al., 2014) and are statistically indistinguishable from expert 

transcriptions of speech in predicting children’s later expressive language (Woynaroski et al., 
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2017). Likewise, Sphinx estimates of the total number of consonants and vowels in child 

vocalizations predict children’s future language abilities and distinguishes children who are at 

risk for language delays from their typically developing peers (Woynaroski et al., 2017; Xu et 

al., 2014). Our team has investigated the reliability of Sphinx’s estimates of phonemes with 

expert human coders from LENA recordings of child and adult speech in inclusion classrooms 

for children with HL. Trained coders recorded the number of unique phonemes present in an 

equal number of child and adult vocalizations. High overall accuracy of Sphinx’s phonemic 

diversity estimates of child and adult speech (Mitsven et al., 2021) highlight its potential to 

characterize children’s language production and input. 

Computational Approaches to Attachment and Autism Assessment 

 In this section, we look under the hood of two mainstay developmental and child clinical 

assessment protocols. The reported studies involve unobtrusively capturing relevant child and 

adult behavior using relatively inexpensive sensors such as Microsoft Kinect cameras, and head-

mounted audio-video recorders. A range of computational approaches—some off-the-shelf and 

some adapted by our team—are used to measure the behavior of all individuals involved in the 

protocol. Objective measurement of the assessment of attachment behavior in the SSP and the 

assessment of ASD symptom severity in the ADOS-2 reveals that assessment protocols designed 

to focus on child behavior may also be influenced by the behavior of adults in the protocols. The 

results shed light on both child and adult contributions to child assessment paradigms.  

Computational Approaches to Infant-Parent Attachment  

Infant-parent attachment is a key index of social-emotional functioning and predictor of 

related outcomes. The gold standard for assessing attachment is the Strange Situation Procedure 

(SSP). During the SSP, videotaped attachment behaviors are evaluated by expert raters. Raters 
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observe the infant’s interactions with the parent, response to a stranger, their reactions to the 

parent’s departure from the room and, crucially, their behavior during the two reunions with the 

parent. The assumption of expert SSP rating is that ratings and attachment classification are a 

reflection of infant and not parent behaviors. It is noteworthy, however, that attachment theory 

derives in part from ethology. In the ethological tradition, interactive behavior is seen as the 

product of two or more individuals. Interaction is the braiding of individual behavior into dyadic 

tresses that cannot be decomposed into separate infant and parent contributions (Bowlby, 1982). 

However, the interactive basis of infant behavior is typically ignored during the measurement of 

attachment in the Strange Situation Procedure (Waters, 2002). The assumption is that the infant 

manifests their attachment-related orientation to the parent, and that the infant’s behavior drives 

expert ratings of that behavior.  

To better understand potential dyadic contributions to attachment behavior in the Strange 

Situation Procedure, we collected objective measures of parent and infant movement via multiple 

synchronized Microsoft Kinect devices, and processed infant vocalizations using LENA software 

(Prince, et al., 2021). We used these objective measures of movement and audio data to 

continuously quantify both infant and parent attachment-relevant behavior during the reunion 

episodes of the Strange Situation Procedure. We compared objectively measured attachment-

related behaviors to expert attachment ratings scales (proximity-seeking, contact-maintenance, 

resistance, and avoidance) and dimensional summaries (approach/avoidance and 

resistance/disorganization dimensions) of attachment outcomes.  

Objectively assessed dyadic variables (such as the proportion of time the infant was in 

close contact with the mother), and variables tapping mother behaviors (such as the velocity of 

mother moving toward and away from the infant) were involved in the prediction of almost all 
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“infant” attachment ratings. The prediction of attachment dimensions was particularly salient 

because these are alternative dimensional operationalizations of attachment security outcomes 

(Fraley & Spieker, 2003). Higher dyadic contact duration, higher velocity infant approach to the 

mother together with higher velocity mother approach to the infant explained more than two 

thirds of the variance in the central approach/avoidance dimension of attachment. These findings 

highlight the capacity of objective measures to reveal dyadic (and likely interactive) facets of 

attachment behavior in the gold standard assessment of infant attachment behavior (Prince, et al., 

2021). 

Another computational approach to the study of attachment comes from our use of 

regime switching models to capture “qualitative” changes in movement dynamics during the 

reunion episodes of the Strange Situation Procedure (S. M. Chow et al., 2018). Attachment 

theory suggests that infants engage in both comfort-seeking and exploratory behavior (Bowlby, 

1982). These appear to be different ‘regimes’ of behavior with different goals and patterns of 

behavior. To explore these potential behavioral regimes, we applied regime-switching models, a 

novel modeling approach for representing abrupt changes in a system of differential equation 

models, to our objective measures of SSP behavior. We distinguished proximity-seeking regimes 

characterized by infants’ approaching the parent from exploration regimes characterized by 

infants’ movement away from the parent. Infant vocalizations (often cries) were likely to 

occasion a change from exploratory to proximity-seeking regimes. Moreover, such changes were 

more common during the second reunion when the infant attachment system is more activated. 

The results contribute to validating a key tenet of attachment theory by showing that infants use 

their vocalizations to help organize attachment seeking behaviors. Thus the application of 

advanced statistical techniques to multimodal objective behavioral measurements can speak 
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directly to developmental theory (S. M. Chow et al., 2018).  

Objective measurement of autism severity 

The characterization of autism spectrum disorder is a hotbed of computational 

approaches to child behavior (Dawson & Sapiro, 2019; Rehg et al., 2013). Digital behavioral 

phenotyping employs objective measurements of human behavior with the goal of providing 

fine-grained identification of diagnostically discriminative differences between individuals 

(Dawson & Sapiro, 2019). Our group, for example, applied audio signal processing to the 

vocalizations of infants who were at elevated likelihood of an ASD outcome (because they had 

an older sibling with ASD). These ‘high-risk’ baby siblings had higher pitched cries than 

typically developing infants during the separation phase of the Strange Situation Procedure. 

Among these infants, those who had ASD outcomes appeared to have the highest pitched cries 

(Esposito et al., 2014).  

We are currently using objective measures of facial expressions and vocalizations to 

predict clinician assessment of autism symptom severity in preschool age children (Messinger, 

2019). Assessment of autism spectrum disorder (ASD) traditionally relies on expert clinician 

observation and judgment, often of rather restricted samples of child behavior. Thus, we focused 

on detecting autism-related behaviors in the relatively constrained clinical setting of ASD 

diagnosis. Diagnostic evaluations for ASD typically include the Autism Diagnostic Observation 

Schedule (ADOS-2), a semi-structured assessment in which the examiner presents a series of 

social presses, activities such as activating a remote-controlled bunny, which are designed to 

reveal autism symptoms (such as a lack of demonstrative pointing). The ADOS-2 yields provide 

overall symptom severity scores in the domains of Social Affect (SA) and Restricted and 

Repetitive Behaviors (RRB). The vast majority of our sample met criteria for ASD. 
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Consequently, we adopted the rather difficult task of using objective characterization of behavior 

in that clinical setting not to distinguish children with and without ASD, but to predict SA and 

RRB symptom severity.  

 Objective measures of child and adult vocalization characteristics as well as 

automatically detected facial expressions in children were used to predict clinician-rated autism 

symptom severity. ADOS-2 evaluations were captured using examiner- and parent-worn video-

enabled eyeglasses. Faces in each frame of the captured videos were first detected by a pre-

trained convolutional neural network or CNN (MTCNN; Zhang et al., 2016), and the age of each 

detected face was estimated by another CNN, Deep Expectation (Rothe et al., 2018). Using a 

gaze detection algorithm validated by Chong et al. (2020) we detected children’s social gaze 

(gaze at an adult) from video segments of detected child faces. and we used commercial 

software, the AFFDEX system (McDuff et al., 2016), to detect child smiles (see Figure 1). Both 

social gaze toward the parent and the proportion of that gaze that involved smiling (Facial Action 

Coding System Action Unit 12, lip corner raising) were unique predictors of social affect 

symptoms. As expected, children with higher levels of social affect symptoms engaged in less 

social gaze and that gaze was less likely to involve sharing a smile (Ahn, et al., 2021).  

Motivated by our earlier research suggesting that vocalization quality may index autism 

risk (Esposito et al., 2014), we analyzed the audio recordings of the ADOS evaluations (Moffitt 

et al., 2021). Using Praat speech analysis software (Boersma & Weenik, 2020), we obtained the 

mean fundamental frequency (F0) of LENA-identified child speech-like and cry vocalizations 

recorded by the audio recorder in the examiner- and parent-worn glasses. Sphinx estimated the 

average count of phonemes per vocalization for LENA-detected child and adult vocalizations. 

We examined the association between these objective measures of vocalizations and children’s 
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calibrated severity scores on the ADOS. A smaller number of child phonemes per vocalization, 

and child vocalizations with a higher fundamental frequency (pitch), uniquely predicted higher 

levels of autism symptom severity in the repetitive behavior domain. The association of vocal 

variables with repetitive behavior symptoms parallels the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5; American Psychiatric Association, 2013) description of this domain. 

With respect to dyadic features of vocal behavior, the fundamental frequency of adult 

vocalizations (higher pitch) functioned in a parallel fashion to the pitch of child vocalizations in 

the regression equation predicting repetitive behavior symptom severity (Moffitt et al., 2021). 

The predictive value of adult vocalization pitch (see also Bone et al., 2014) may tap into the 

responsiveness of adults to more symptomatic children. Specifically, adults may use a more 

active approach, including the use of more high pitch child-directed speech, to engage more 

symptomatic children in social interactions.  

Overall, these results suggest objective quantification of vocalizations (which are 

associated with repetitive behavior symptoms) and automated measurements of social gaze and 

smiling (which are associated with social affect symptoms) characterize complementary 

diagnostic features of the ASD behavioral phenotype. In clinical settings, objective 

characterizations of behavior could provide examiners with supplementary information about the 

severity of ASD symptoms. Moreover, objective measurement approaches can economically be 

applied to large samples of behavior in multiple contexts to assess the degree to which symptom 

expression is evident and sustained across settings. 

Interactive Behavior in Schools (IBIS): Computational Approaches to the Study of Preschool 

Classroom Behavior 

Studying development in situ allows us to observe how behavior and interaction in one 
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moment gives rise to changes over longer periods of time, facilitating an understanding of the 

nested timescales of developmental process. As over 60% of 3-5 year-olds attend preschool 

(Irwin et al., 2021), preschool classrooms represent a key context for children's development. In 

preschool, children experience a range of emotions, and engage with learning opportunities, 

peers, and teachers. They develop self-regulatory and perspective-taking abilities in dyadic, 

small-group, and large group activities. Inclusion—in which children with developmental 

disabilities are educated in the same classrooms as typically developing children—is a gold 

standard intervention. Thus, interaction in inclusive classrooms provides a window into the 

diversity of behavior that is key to understanding the mechanisms driving development. 

The labor-intensity of collecting expert observations of behavior has historically been an 

obstacle to conducting preschool research in both inclusive and non-inclusive classrooms. 

Moreover, expert observations of interactions can only capture a portion of ongoing classroom 

social activity. However, recent advances in sensing technologies allow for continuous 

measurement of classroom interaction, allowing for new insights into classroom behavior and 

development (Gonzalez Villasanti et al., 2020). Our group is applying these approaches to the 

study of language and interaction in inclusive preschool classrooms and classrooms for children 

with developmental delays. We typically conduct objective measurements over the course of the 

school day (which is often a half-day for preschoolers) at weekly to monthly intervals during the 

school year. Measurements typically involve all of the children and teachers in the classroom 

although occasionally a family does not consent to the research protocol or a child does not want 

to wear their instrumented vest. Children’s language abilities are assessed using standardized 

instruments (typically, the Preschool Language Scales Fifth Edition, PLS-5) at the end of the 

school year and, increasingly, at the beginning of the year as well. In the following sections, we 
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review how our work in this domain has expanded our understanding of children’s social 

interactions and language development. 

Computing classroom language 

 LENA technology allows us to simultaneously record the speech of multiple children and 

teachers over the school day. Our initial work with LENA indicated that children who were 

exposed to higher rates of peer vocal input and children who engaged in a higher number of 

conversational turns with their teachers tended to vocalize more themselves (Perry et al., 2018).  

Further, vocal input from peers and more conversational turns with teachers were associated with 

greater expressive vocabulary gains (Perry et al., 2018). This research highlighted the role of 

both peers and teachers in contributing to children’s classroom language development, an issue 

which remains the topic of vigorous research. We have employed two major strategies for 

understanding classroom language. For the most part, we have examined the frequency of child 

and teacher vocalizations, their rate of talking. However, we have also investigated the phonemic 

richness of those vocalizations (the number of speech sounds they contain), an investigation we 

detail below.  

Phonemic production: Teacher to child and child to teacher 

 Our team supplemented LENA’s quantification of the number of teacher and child 

vocalizations in the classroom with Sphinx estimates of the phonemic composition of those 

vocalizations to compare the relative contribution of the rate and phonemic diversity of 

vocalizations to children’s language abilities at the end of the school year (Mitsven et al., 2021). 

Children who were exposed to a higher rate of vocalizations per minute from their teachers 

produced a higher rate of vocalizations per minute themselves. Similarly, children who were 

exposed to more phonemically diverse speech from teachers (vocalizations containing a higher 
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number of unique phonemes), produced more phonemically diverse speech. These associations 

were observed both in children with hearing loss as well as their typically developing peers, 

highlighting the importance of teacher speech in influencing the language production of all 

children in the classroom.  

Crucially, we found that the phonemic diversity of children’s own speech was a stronger 

predictor of children’s end-of-year language abilities than the rate of their speech. Additionally, 

the phonemic diversity of children’s own speech mediated the relationship between the 

phonemic diversity of their language input from teachers and their end-of-year language abilities 

(see Figure 2). These findings highlight the role of teachers in supporting children’s spoken 

language skills. They underscore the importance of high-quality language production in 

predicting language abilities both for children with hearing loss and typically developing 

children. Finally, the mediation analyses indicate how children’s language environments can 

support their own linguistic productions which, in turn, scaffold their developing language 

competencies (Mitsven et al., 2021).  

The temporal structure of classroom language. 

Speech sounds are functionally flexible and can express a variety of meanings while cries 

express specific emotional content. But both types of vocalizations are embedded in time 

(Messinger, Custode, et al., 2019). Automated measurement allows us to ask about the utility of 

two measures of the temporal structure of vocalizations, burstiness and temporal dependency. 

The burstiness coefficient assesses temporal patterning over relatively long timescales. 

Burstiness pertains to the time between the onsets of behavioral events such as vocalizations. Of 

note, the time between the onset of behavioral events involves both the event and the following 

non-event (e.g., the time between vocal onsets includes the duration of the vocalization and the 
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duration of the silence that follows). By contrast, the temporal dependency measure ignores non-

events. Temporal dependency can be expressed as a correlation that quantifies the degree to 

which the duration of one event predicts the duration of the next. Thus, temporal dependency 

quantifies relatively short-term dependencies in the duration of behavioral events such as 

vocalizations.  

We examined burstiness and temporal dependency in infants from 10 to 35 months of age 

over a two year period (Messinger, Custode, et al., 2019). Burstiness and temporal dependency 

were not associated at the level of the child, suggesting the relative independence of these indices 

of temporal structure. Cry vocalizations exhibited higher levels of temporal dependence than 

speech-like vocalizations and levels of temporal dependence between the two vocalization types 

were not associated. That is, the duration of vocal expressions of infant negative affect predicted 

the duration of the next such expression at higher levels than was the case for presumably more 

affectively neutral speech-like vocalizations. By contrast, levels of cry and speech-like 

vocalization burstiness were associated, but only the burstiness of infant speech-like 

vocalizations was associated with the rate of infant-teacher conversational turns. This suggests 

that vocal interactions may play a role in structuring the onsets of infants’ functionally flexible 

speech-like production over time. Thus, the application of two complementary computational 

indices of temporal structuring contributed to a better understanding of the function of different 

types of infant vocalizations in naturalistic groups. Next we turn from individual child 

vocalizations to dyadic vocalization patterns. 

Social interactions and speech 

Previous research indicates that children with stronger language abilities tend to engage 

in a higher number of positive interactions with peers (see Chow, 2018 for a review). This 
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research, however, focuses on children’s overall interactions with all peers, rather than focusing 

on individual children and their specific peers. That is, the role of both dyad members in co-

constructing language experiences and interaction has been relatively neglected. To address this 

issue, our team asked how children’s classroom language production was associated with the 

social interactions of specific dyads. Using LENA algorithms, we examined associations 

between the frequency of child vocalizations and teacher input and expert coded observations of 

children’s positive and negative interactions with peers and teachers (Custode et al., 2020). We 

explored the contributions of both the focal child’s relative level of talkativeness and each of 

their partners' relative level of talkativeness to understand how dyadic language levels were 

associated with the tenor of interaction. Dyads made up of two highly talkative children had the 

most positive interactions and those made up of two relatively untalkative children had the least 

positive interactions. Notably mixed dyads (composed of a highly talkative and a relatively 

untalkative child) exhibited intermediate levels of positive interactions, suggesting the likelihood 

of a dyad having a positive interaction is related to their combined language skills. This pattern 

of results, stemming from the use of automated measurements of language in day-long classroom 

recordings, highlights the dyadic nature of peer social interaction.    

Who are you talking to? Integrating objective measures of social contact 

Previous approaches to studying the impact of peer language on child development often 

involve either labor intensive coding of peer interactions in the classroom, from brief 

observations of one child. An alternate approach is averaging the language skills of all the 

children in a classroom as a proxy for the language resources that an individual child 

experiences. Missing from both of these approaches is a comprehensive real-time understanding 

of the many simultaneous language-mediated interactions that occur in a classroom and how 
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those interactions change over time. In the research below, we capture children’s interactions by 

integrating first-person audio recording of language with motion tracking. We begin by 

examining motion tracking as a stand-alone approach to understanding children’s social lives.  

Real-time movement to understand sociality 

Continuous real-time measurement of children’s location and movement offers powerful 

insights into children’s social interaction. Our team utilizes Ubisense’s ultrawide radio frequency 

identification (RFID) system to objectively measure social movement and interaction in 

preschool classrooms (Ruiz et al., 2017; see Figure 3). Ultrawide RFID tags can be used to track 

children’s and teachers’ location and orientation at 2-4 Hz to an accuracy of 15-30 cm by means 

of triangulation and time of arrival differences (Irvin et al., 2018; Phebey, 2010). An alternative 

to ultrawide RFID location-based tracking is proximity-based tracking via Bluetooth or similar 

technologies. Using Bluetooth based tracking, for example, Veiga and Ward (2016) found that 

the average duration of a child’s contact with other children was positively associated with 

teacher ratings of the child’s social competence. In such Bluetooth-based, proximity-based 

tracking, one knows when individuals are close to one another based on a priori parameters 

embedded in the badges and their technical capabilities (the distances and orientations at which 

badges are able to transmit to one another). Unlike in our use of location-based tracking, 

however, one does not know where children are located in classroom space, nor can one use 

data-driven methods to determine when children are in social contact or how they approach one 

another.   

Computing social approach: Homophily effects 

We have used ultrawide RFID location-based tracking to explore social approach in 

children with and without ASD. ASD is defined in part by disorders of social interaction that 
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include atypicalities in social approach such as movement toward peers and adults (Hilton et al., 

2012; Schoemaker & Kalverboer, 1994). To investigate social approach, we tracked all children 

in inclusion classrooms containing children with ASD and other developmental disabilities (O-

DD), as well as typically developing (TD) children (Banarjee, et al., 2021). We first ruled out the 

possibility of overall differences in the velocity of general (non-social) movement.  There were 

no overall velocity differences in the classroom movement of children with ASD, their TD peers, 

and their peers with O-DD. There were, however, differences in social approach. To understand 

these differences, we introduce homophily—the tendency of children to interact with children 

who are similar to themselves on dimensions such as gender and disability status. Homophily is a 

driving force in children’s social interactions in and out of the classroom (Laursen, 2017; Martin 

et al., 2005). However, evidence for homophily in the classroom is typically constrained by 

human observation and large-scale research is typically dependent on teacher reports of peer play 

preferences. 

We found striking homophily effects in the velocities at which children approached one 

another (Banarjee, et al.,2021). Children with ASD and O-DD did not differ from TD children in 

the velocities with which they approached other children. Instead, effects were dyadic. Children 

in concordant dyads (e.g., ASD-ASD) approached one another at higher velocities than 

discordant dyads (e.g., TD-ASD). With respect to social approach, then, ASD deficits in velocity 

were not evident. Instead, dyads concordant on disability status interacted with one another at 

higher velocities than discordant dyads, indicating early homophilic patterns of social movement 

in all three groups.   

Computing social contact 

Continuous measures of real-time movement led us to ask how we could determine when 
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children were in interaction with one another. At what distances or orientations can we say that 

two children are in social contact? We turned to statistical physics for insight. In physics, the 

radial distribution function, g(r), is used to ascertain the differential structure of molecules in 

liquids and solids such as crystals (Chandler, 1987). To detect social interaction, we applied the 

radial distribution function to index when children were in proximity at greater than chance 

levels (see Figure 4).  

Specifically, we used ultra-wide RFID measures of location to calculate the observed 

distance of each child from every other child over time. Crucially, we compare these observed 

distances to the distances expected by chance. The distance expected by chance is calculated 

from a null model of the cumulative probability of a child being in a given area of the classroom 

over an entire observation. One can think of this null model as a heat map of areas in which 

children tend to be located. From this static model, we calculate the chance likelihood of pairs of 

children being at a continuous range of distances from one another (e.g., .1 meters, .2 meters, and 

so on; see Figure 4). By dividing the observed proximities of a given distance by the null model 

for that distance, we derive the radial distribution function. When the function exceeds 1, the 

probability that two children are to be found within the specified distance is higher than expected 

by chance. Consequently, when the function exceeds 1, we infer that a pair of children are in 

social contact, that the children are proximal because of the other’s presence.  

Gendered social contact in the classroom 

We first applied the radial distribution function during free play in a kindergarten 

classroom in which the 5-year-olds wore Ubisenese RFID tags on their wrists (Messinger et al., 

2019). The radial distribution function indicated that children were in social contact when they 

were within 1 meter of one another. Rank-order plots indicated that children’s levels of social 
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contact with individual peers (ordered from most contact to least) showed exponential decay (see 

Figure 5). That is, children spent tens to hundreds of times more with some peers than others, a 

relatively unexplored feature of classroom social life (Chen et al., 2019, 2020). Social network 

analyses suggested moderately strong sex segregation. Children tended to engage in more social 

contact with same-sex than other-sex peers (i.e., boy-boy and girl-girl pairing). Thus continuous 

tracking of children's location revealed the exponential structure of children’s social contact with 

peers and shed new light on gender homophily (Messinger et al., 2019).  

Integrating orientation: Homophily and social contact 

Proximity is an essential social contact criterion, but interpersonal orientation is also 

relevant. It is unlikely, for example, that two children with their backs to one another are in 

social contact. To incorporate interpersonal orientation, we equipped children with two hip-worn 

RFID tags (rather than a single tag as in Messinger et al., 2019). Having a left-side and a right-

side tag enabled us to calculate children’s relative angular orientation to one another (see Figure 

6). Visualizations of children’s angular orientations appeared to support our surmise that face-to-

face contact was a privileged interpersonal orientation for interaction (see Figure 7). 

Consequently, we added an angular orientation criterion to the data-derived proximity criterion 

derived from the radial distribution function. In subsequent research, social contact occurred 

when two criteria were met: Children were within the proximity limit and they were more-or-less 

oriented to one another.  

We first applied the dual social contact criteria (proximity and orientation) in inclusive 

classrooms for children with ASD, other development delays (O-DD), and typically developing 

children. There were powerful homophily effects such that children spent more time in social 

contact with children in the same disability group (ASD-ASD, O-DD/O-DD, and TD-TD) than 
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with other children. There also appeared to be disability group effects such that, for example, 

children with ASD and with O-DD spent less time in social contact than TD children, but the 

introduction of interaction terms rendered the main effects of disability group non-significant. 

Instead, the interaction terms indicated that among concordant dyads, ASD-ASD and O-DD/O-

DD dyads were in social contact less than TD-TD dyads. ASD-specific deficits in social contact 

might be expected but instead we found that variations in homophily structured social contact. 

Children with ASD were in social contact with other children with ASD less than TD-TD dyads, 

and O-DD dyads showed a corresponding pattern. The results suggest the potential of a new 

generation of objective measures to extend our understanding of dyadic patterning of children’s 

social lives in preschool inclusion classrooms. 

Social Contact and Vocal Interaction  

Dyadic conversations  

To expand our understanding of linguistic interaction and language development, we 

sought to integrate classroom language measures with objective tracking of child movement (see 

also Irvin et al., 2021). Although LENA algorithms identify target child vocalizations and 

distinguish whether a child’s partner is another child (a peer) or an adult, they do not distinguish 

who, specifically, the partner is. To understand who is speaking to whom we synchronized 

Ubisense ultrawide RFID tag measures of social contact (proximity and orientation to peers) 

with LENA vocalization measures.  

As a first step, we found that objective measurements of children’s conversations are 

associated with sociometric indices of peer relationships and observational measures of 

classroom engagement. We compared preschool teacher and child reports of peer friendship with 

the average dyadic rate of vocalizing in social contact (i.e., objectively measured peer 
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interaction). Dyads who engaged in higher rates of vocalizing in social contact were more likely 

to endorse each other as friends and were more likely to be rated as friends by their teachers 

(Altman et al., 2019). Likewise, using the inCLASS observational coding system, expert ratings 

of children’s engagement with peers and teachers were associated with children’s speech to those 

partners (Fasano, Perry, Custode, et al., 2021). The results suggest that children’s vocal 

interactions with peers index their friendships, and that children’s vocalizations to partners are an 

index of their interpersonal engagement.  

We next considered children’s vocalizations in social contact with peers to substantively 

understand the flow of classroom language. Consistent patterns of dyadic conversation over time 

were evident in analyses. The more vocalizations a child heard from a peer on one observation, 

the more vocalizations they produced to that peer on the following observation (see Figure 8). 

That is, A's level of speech to B predicted B’s level of speech to A in the next observation. 

Analyses controlled for B’s previous speech to A (an autoregression effect). Observations 

occurred every 1 to 4 weeks, but the predictive power of peer vocalizations did not vary based on 

the time between observations. This finding was evident in inclusion classrooms containing 

children with hearing loss and their typically hearing peers (Perry et al., 2021), and in classrooms 

containing children with ASD, other developmental disabilities (O-DD) and their typically 

developing peers (Fasano, Perry, Custode, et al., 2021). Moreover, no differences were apparent 

in the strength of the reciprocal peer vocalization effect between TD children and children with 

any category of developmental disability.  

The findings suggest a reciprocal pattern of dyadic vocalization for all the children in the 

classroom. That is, A’s speech to B predicts B’ speech to A which, in turn, predicts A’s speech 

to B. To ascertain the impact of peer speech in inclusion classrooms for children with hearing 
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loss, we divided earlier from later observations (e.g., fall from spring) and predicted children’s 

end-of-year language abilities in mediation analyses. Vocalizations from peers had an indirect 

association with children’s end-of-year language abilities as mediated by children’s vocalizations 

to peers (Perry et al., 2021). The results simultaneously suggest the influence of peer speech and 

indicate the impact of children’s own speech, their own language production, in predicting 

assessed language abilities (Hirsh-Pasek et al., 2015; Ribot et al., 2018). 

Previous research on peer effects indicated that average classroom language ability 

predicts children’s language gains (both measured with standardized assessments) over the 

school year (Justice et al., 2011). The current computational approach to assessing children’s 

vocal interactions with individual peers suggest a mechanism for the previously documented 

effects. Within-dyad transmission of speech over the school year appears to lead to individual 

child language gains. Speech from peers appears to be a vehicle for increasing children’s 

subsequent vocalizations to their peers, which provides them with an opportunity to exercise and 

consolidate language competencies. That is, speech to peers may provide young children 

opportunities to use words and grammatical constructions that scaffold their developing language 

abilities. These results suggest the importance of dyadic conversations in shaping children’s 

language capacities over developmental time, but they do not speak to social groupings larger 

than the dyad.  

Social Language Networks 

The totality of dyadic interactions between peers constitutes a social network. Children 

with developmental disabilities and language delays are more peripheral to social networks than 

their typically developing peers (Chen et al., 2019, 2020; Locke et al., 2013). These findings, 

however, are dependent on child friendship ratings and teacher ratings of children’s interactions 



28 
 

and relationships. While valuable, these approaches offer only a (potentially biased) static 

snapshot of peer relationships (Shin et al., 2014). In our initial research, social networks were 

based only on social contact (Messinger et al., 2019). In recent work, automated measures of 

vocalization frequency in social contact were implemented in inclusion classrooms for children 

with ASD and other developmental disorders (O-DD) over multiple days of observation (Fasano, 

Perry, Zhang, et al., 2021). In these networks, nodes are connected by edges weighted by the 

vocal interaction between the two children (the sum of the rate of the vocalizations made by each 

child to the other; see Figure 9).  

Network analyses (Fasano, Perry, Zhang, et al., 2021) indicate that, as a group, children 

with ASD exhibited lower modularity (cohesiveness) than children with O-DD or TD (who did 

not differ from one another in modularity). Modularity indexes the mean weight of edges 

between group members. Likewise, ASD-TD modularity (edges between children in these 

groups) was lower than O-DD/O-DD and TD-TD modularity. Thus, continuous measures of 

vocal interaction suggest that even in inclusion classrooms designed to foster between-group 

interaction, children with ASD can be isolated from other children’s conversations. To 

understand the effects of this isolation, we examined the association between degree centrality 

(the total frequency of child vocalizations to and from peers in social contact) and assessed end-

of-year language abilities. Even when accounting for group differences, degree centrality was 

positively associated with assessed language abilities, highlighting the role of real-time peer 

vocal interactions in scaffolding developing language capacities. The results speak to the power 

of network analyses of children’s objectively measured conversations over the course of the 

school day to reveal group structures that reflect children’s access to peer-based language 

resources in the classroom.  
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As we hope to have illustrated, continuous objective measurement has the potential to 

both differentiate children based on their developmental disabilities, and to identify shared 

developmental pathways among children with and without disabilities. Identifying specific 

deficits in behavioral interaction (speech in social contact, for example) that distinguish children 

with a specific developmental disability can elucidate intervention approaches for those children 

in their naturalistic environments. Likewise, when speech in social contact does occur its 

influence appears to be similar across groups, suggests the potential for wide use of interventions 

targeting that type of social interaction.  

Future Directions 

Understanding children’s language  

In our preschool research, we have examined classroom language with respect to the rate 

per minute of child and adult speech, the number and diversity of phonemes in that speech, 

conversational turn counts between children and adults, and explored the short-term and long-

term temporal structuring of that speech. This has produced insights into peer and teacher 

sources of children’s language development and the social structure of classrooms (Fasano, 

Perry, Zhang, et al., 2021; Mitsven et al., 2021; Perry et al., 2018). However, questions remain 

about the best way to record and analyze speech, and how to best investigate whether sociality 

indeed drives language development in early social groupings like preschool classrooms. 

 Off-the-shelf LENA software is frequently used by developmentalists to record and then 

classify adult and child speech segments in audio recordings. Although LENA recorders are 

small in size and frequently used in developmental research, they record audio monophonically 

on a single track. A promising alternative is to acquire two audio tracks stereophonically, which 

can facilitate later sound source separation and denoising (Alamdari et al., 2021; Y. Yu et al., 
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2016). Stereo audio recording may be particularly important in noisy environments.  

 Having recorded home, clinic, or classroom speech, how should researchers quantify the 

vocalizations and vocal interactions they wish to study?  While comparisons of LENA 

classification to expert human coders, including our own work, show acceptable reliability for 

specific classification tasks, LENA algorithms also exhibit bias, at least in home and home 

compound settings. LENA algorithms tend to attribute female adult vocalizations to males, and 

tend to attribute the vocalizations of focal children (children wearing the LENA recorder) to 

other children in the audio frame (Cristia et al., 2021). Thus, in classrooms at least, pairing 

LENA recorders with location tracking may be important to clarifying whether the focal child or 

a peer is speaking (Fasano, Perry, Custode, et al., 2021; Irvin et al., 2021; Perry et al., 2021).  

It is also of note that LENA software uses shallow machine learning models to 

distinguish speechlike vocalizations and to distinguish between speakers (Gilkerson & Richards, 

2009; Xu et al., 2009). As noted, shallow models are trained on selected features of the audio 

signal rather than the signal itself. Deep learning methods, however, exhibit superior 

performance to conventional shallow machine learning methods in many applications including 

audio processing (Lahiri et al., 2020; Lecun et al., 2015). ALICE—Automatic LInguistic unit 

Count Estimator—is a software toolkit that performs diarization, speaker classification, and 

phoneme, syllable, and word counts based on deep learning (Räsänen et al., 2021). ALICE 

provides more accurate measures of adult speech from child-centered daylong recordings than 

LENA, and represents a promising approach to characterizing classroom language. 

Our current models indicate how speech between children and their preschool partners is 

reciprocated over weekly to monthly observation and from the spring to fall semesters of the 

preschool year (Fasano, Perry, Zhang, et al., 2021; Mitsven et al., 2021; Perry et al., 2021). But 
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these models do not speak to real-time vocal interaction. We and others have found that the 

quantity of LENA-identified adult-child conversational turns are associated with children’s 

reported vocabulary development and language outcomes (Gilkerson et al., 2018; Perry et al., 

2018; Romeo et al., 2018). A difficulty with these adult-child conversational turns, however, is 

that they are conceptually tied to (and strongly correlated with) the frequency of children’s own 

vocalizations (Harbison et al., 2018). By contrast, a partner’s responsive vocal feedback to a 

child’s vocalizations is distinct from the vocalizations themselves. Moreover, responsive 

feedback is a driver of child speech in multiple contexts among children with and without ASD 

(Cabell et al., 2015; Harbison et al., 2018; McDuffie & Yoder, 2010; Warlaumont et al., 2014). 

Little is known, however, about the role of responsivity in classroom speech (Hindman et al., 

2019). The role of teacher and peer verbal responsivity in fostering children’s real-time language 

production and long-term language development is a promising topic for future research. 

A full understanding of children’s linguistic interaction will require understanding the 

content of speech, what is being said. Commercial speech to text services offer a machine 

learning approach to understanding what children and teachers are saying to one another (Chiu et 

al., 2018). Classrooms are noisy environments, however, and it is unclear when such an approach 

will be viable. Nevertheless, in a relevant pilot study, investigators used head-mounted video 

cameras to capture children’s first-person experiences. Individual participant faces were 

identified using Amazon Rekognition processing. Crucially, vocalizations were identified by 

Amazon Transcribe but then manually coded as being spoken by a teacher, focal child, or peer. 

Integration of video and audio coding nevertheless yielded promising levels of accuracy in 

identifying expert human-coded interaction.  

Understanding social contact 
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The radial distribution function, g(r)—and visualizations of children’s relative 

orientation—are typically calculated for all children in the classroom. Yet individual differences 

between children—for example, disability group—may condition these values. That is, different 

groups of children may differ in the data-driven parameters (distance and orientation) that define 

their social contact. Likewise, it remains to be seen whether these differences are individual (e.g., 

children with ASD are in social contact at longer distances) or dyadic (e.g., children with ASD 

are in social contact at longer distances when interacting with other children with ASD). 

In our work, we have primarily determined social contact using a combined proximity-

orientation criterion. However, the orientation criterion has relied on a priori decisions about 

what constitutes social interaction (i.e., approximately face-to-face mutual orientation between 

partners). We intend to explore a data-driven approach to determining orientation criteria akin to 

our radial distribution function used to determine proximity criteria (see Figure 7). That is, when 

children are within the social contact proximity criterion, we can ask whether the probability of 

an observed relative orientation exceeds that expected by chance. This procedure provides a 

data-driven index of when the relative orientation of two children is related to the presence of the 

other.  

More fundamentally, however, social contact criteria based on distance and relative 

orientation are associated. In pilot analyses, we have synthesized the distance and relative social 

contact criteria in a joint likelihood distribution of distance and relative orientation (see Figure 

10). The joint likelihood distribution suggests that distance and relative orientation criteria are 

associated. The results indicate the productive potential of computational processing of objective 

tracking of physical position to understand children’s social interaction. 

Understanding deep learning 
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Developmental scientists have increasing access to large volumes of behavioral data 

collected by sensors such as video cameras, microphones, and RFID tags and badges. Applied to 

this sensor data, deep learning techniques are increasingly able to produce reliable objective 

measurements of children’s behavior during interactions with peers, teachers, and parents in 

naturalistic, assessment, and other contexts. Two examples from autism assessment are of note. 

Deep neural networks are able to differentiate child and adult speech more accurately than more 

conventional approaches (Lahiri et al., 2020). Likewise, accurate, automated gaze detection from 

first-person video is now possible with models based on convolutional neural networks trained 

on a large-scale expert-annotated dataset (Chong et al., 2020).  

The potential of deep learning models to understand and predict behavior is as important 

as their role as measurement tools. An instructive example is our adoption of an inverse optimal 

control approach to understanding infant-mother, face-to-face smiling interactions (Ruvolo et al., 

2015). The premise of the approach is that infants’ and mothers’ probable goals during 

interaction can be inferred from the historical consequences of their smiling actions over time. 

Posterior probabilities indicated that mothers preferred states of mutual smiling. By contrast, 

infants—who often smile briefly, elicit a mother smile, and then stop smiling—preferred states 

in which mothers smiled but they did not. Thus, sophisticated learning models can provide new 

insights into interactive behavior. 

In the realm of prediction, deep learning models can use prior behavior as input to “learn” 

subsequent behavior (Abduallah et al., 2020; Butepage et al., 2107; K. Yu et al., 2017) . In pilot 

work we applied deep learning models to predict the quantity of children’s vocalizing in 

preschool inclusion classrooms. Based on the previous movement and audio data of children and 

teachers, convolutional neural networks and recurrent neural networks accurately predicted the 
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quantity of children’s future vocalizations. The results are important because they represent data-

based, assumption-free, prediction of speech, a developmentally central child behavior. 

Yet the potential predictive strength of deep learning models may come at a cost. Deep 

learning models typically lack transparency and interpretability (Olah et al., 2018).  That is, the 

complex, multilayer, nonlinear, sometimes iterative relationship between the model inputs and 

predictions resists human understanding. Reduced interpretability makes it more difficult to gain 

insights into interaction—the factors, for example, that motivate children’s classroom 

vocalizations—from deep learning models. Consequently, explaining deep neural network 

predictions and building interpretable deep neural networks is a topic of ongoing investigation 

(Afrabandpey et al., 2020; You et al., 2021). A promising direction of research, then, is 

ascertaining the limits of interpretable deep learning in predicting and understanding early 

interaction and development. 

To conclude, it is tantalizing to consider similarities between the developing child and 

“developing” deep learning algorithms, specifically various types of dynamic neural networks. 

The analogy here is to dynamic neural networks generally, without focusing on networks 

constructed to specifically simulate early developmental processes in a neurally plausible fashion 

(Bhat et al., 2021; Buss, 2017; Perone & Simmering, 2017; Sen et al., 2020; Thibodeau et al., 

2020). Dynamic neural networks develop in a fashion similar to human infants. They 

categorize—sometimes in a supervised fashion but more frequently in an unsupervised fashion—

vast quantities of sensory data. Like these neural nets, human infants generate remarkable 

developmental results in a fashion that is somewhat resistant to mechanistic understanding. A 

key difference, of course, is that human infants are embodied and motivated to act on the world. 

Our hope, nevertheless, is that inquiries into these two types of developing systems continue to 
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fertilize one another.   
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Figure Legends  

Figure 1. ADOS-2 Assessment. A child’s face and expression are captured by examiner-worn 

video-enabled eyeglasses and detected by a machine learning program during administration of 

the ADOS-2.  

 

Figure 2. Phonemic Diversity and Assessed Language Ability. (A) Mediation model. The 

phonemic diversity of teachers' speech was associated with the phonemic diversity of children’s 

speech, which, in turn, positively predicted children’s end-of-year expressive language abilities. 

(B) Scatterplot. Children who produced speech with a higher number of unique phonemes scored 

higher on a standardized measure of expressive language ability, the PLS-5. (Parallel results with 

receptive language ability not shown.) Credit: Mitsven, S. G., Perry, L. K., Tao, Y., Elbaum, B. 

E., Johnson, N. F., & Messinger, D. S. (2021). Objectively measured teacher and preschooler 

vocalizations: Phonemic diversity is associated with language abilities. Developmental science. 

 

Figure 3. Materials used to continuously track children’s and teachers’ location and orientation in 

the classroom. Ubisense sensors are arrayed, one in each corner of the classroom, and track the 

ultrawide RFID signal emitted by each of the two tags worn by children and by teachers. 

 

Figure 4. The radial distribution function. The radial distribution function, g(r), indicates 

distances at which the probability of child–child and child-teacher pairs being in contact exceeds 

chance (g(r) = 1). The grey area above between 0.2 and 2 m index illustrates the proximity 

criterion for social contact across cohorts (classes of children). Figure compliments of Chitra 

Banarjee, Yale University. 
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Figure 5. Semi-log plots of the mean frequency of children’s social contacts by ordinal rank. 

Levels of social contact, aggregated for all children, are displayed for each child’s most to least 

contacted peer. Rank 1 indicates the most contacted peer, Rank 2 the second-most, and so on. 

Boys and girls’ mean contact frequency are shown separately. Both males and females 

consistently show levels of social contact with their most contacted peers that are ten to hundreds 

of time higher than levels of contact with their least contacted peers. Credit: Messinger, D. S., 

Prince, E. B., Zheng, M., Martin, K., Mitsven, S. G., Huang, S., ... & Song, C. (2019). 

Continuous measurement of dynamic classroom social interactions. International Journal of 

Behavioral Development, 43(3), 263-270. 

 

Figure 6. Classroom visualization. A visualization of objective measurements of child and 

teacher location in an inclusion classroom. The tip of each triangle indicates the direction each 

child and teacher is facing (orientation). Orientation is calculated from the 2 Ubisense tags 

 

Figure 7. Mutual orientation. The heat map indicates the angle of each child to other children & 

teachers (θ1 to θ2) from .2–2m. Children tend to be shoulder to shoulder (~=90 o), & face-to-face 

(within |45o| of 0o) with partners. The color bar indicates the ratio of observed mutual 

orientations to chance (=1, yellow line; black line =1.5). Chance relative orientation refers to the 

cumulative probability of relative orientations between all children over an entire observation.  

 

Figure 8. Peer speech transmission. Visualized associations between peer vocalizations in social 

contact with focal child at observation t and child vocalizations to those peers at t+1. The 
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association did not differ by the focal child’s hearing status. The vocalization rate per hour is 

presented on a log10(x+1) scale. Each point represents one child’s vocalizations to one peer. 

Error bands show standard errors of the mean. 

 

Figure 9. Classroom speech network. Each node is one child in a classroom. Node size is 

proportional to total vocalization rate (input and output) in social contact with all peers. Tie 

width indexes the sum of vocalizations in social contact between two children (co-talk). For 

visualization purposes, the network was pruned such that only ties of greater than mean weight 

(both per observation and overall) are displayed. Credit: Fasano, R. M., Perry, L. K., Zhang, Y., 

Vitale, L., Wang, J., Song, C., & Messinger, D. S. (2021). A granular perspective on inclusion: 

Objectively measured interactions of preschoolers with and without autism. Autism Research. 

 

Figure 10. Mutual orientation and proximity. Mutual orientation is indexed by the relative 

orientation of two children (theta1 minus theta2) where 0 indicates a face-to-face orientation and 

+180 indicates shoulder-to-shoulder orientation. R indicates the radius, the distance between the 

two children. The heat map indicates the likelihood of a given orientation and a given distance 

occurring with respect to chance (observed divided by chance). Reds indicate higher likelihoods 

probabilities and blues indicate lower likelihoods. The green line encloses all areas where the 

joint probability exceeds 1, and the black line encloses areas where the joint probability exceeds 

2. Face-to-face contact tends to occur over relatively long distances (through 3 meters) but is 

concentrated in a small band around 1 meter. By contrast shoulder-to-shoulder contact (around 

plus and minus 180 degrees) tends to occur much more than chance in a relatively restricted 
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range of distances between approximately .2 and 1.8 meters. Figure compliments of Chaoming 

Song and Yi Zhang, University of Miami. 

 

 

Figure 1. ADOS-2 Assessment. 
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Figure 2. Phonemic Diversity and Assessed Language Ability. 
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Figure 3. Materials used to continuously track children’s and teachers’ location and orientation in 
the classroom. 
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Figure 4. The radial distribution function. 
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Figure 5. Classroom social network illustration. 
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Figure 6. Classroom visualization. 
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Figure 7. Mutual Orientation. 
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Figure 8. Peer speech transmission 
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Figure 9: Classroom Speech Network. 
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Figure10. Mutual orientation and distance. 

 
 
 
 
 
 
 
 


