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Abstract and Keywords

Early interaction is a dynamic, emotional process in which infants influence and are influ
enced by caregivers and peers. This chapter reviews new developments in behavior imag
ing—objective quantification of human action—and computational approaches to the 
study of early emotional interaction and development. Advances in the automated mea
surement and modeling of human emotional behavior—including objective measurement 
of facial expressions, machine-learning approaches to detecting interaction and emotion, 
and electrophysiological measurements of emotional signals—provide new insights into 
how interaction occurs. Furthermore, advances in automated measurement and modeling 
can be applied to the study of atypical development, contributing to our understanding of, 
for example, social affective behaviors in toddlers with autism spectrum disorder (ASD). 
The chapter concludes by posing questions for future directions of the field of computa
tional approaches to emotion.
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Introduction
EARLY interaction between infants, parents, and other caregivers is an emotional process 
replete with bouts of both laughter and distress. These emotional expressions often devel
op in the context of intricate social interactions that may be the basis of patterns of emo
tional engagement throughout the life span (Messinger et al., 2010). However, our under
standing of emotional expression has been hampered because human coding of emotional 
expression is time-intensive (Cohn & Kanade, 2007). A consequence of this measurement 
bottleneck is that more is known about infants’ perception of emotional expressions than 
of their actual production of these expressions (Mitsven et al., 2020). To surmount these 
difficulties, this chapter reviews computational approaches to the measurement and mod
eling of emotional expression and interaction. Modeling here refers both to advanced in
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ferential (statistical) methods, machine-learning approaches, and their increasingly com
mon hybrids. Finally, we review recent work applying automated measurement of electro
physiological and behavioral indices of emotion to the characterization of autism spec
trum disorder (ASD).

Automated Measurement of Emotional Expres
sion and Interaction
Advances in machine learning (in which software learns to represent and classify video or 
audio signals) offer the possibility of automated measurement of facial expressions, 

(p. 306) emotional vocalizations, and other expressive actions. Here, we review three pri
mary approaches to automated measurement of emotion. In the first approach, objective 
measures of low-level behavior features, including the movement of facial landmarks and 
the proximity of infant and parent, serve as direct indices of emotional functioning. In the 
second, unsupervised algorithms detect emotional signals directly from audio or video da
ta. Here, the software detects and represents the phenomena of interest—and the human 
investigator interprets the results. The third and most common approach involves using 
algorithms to replicate human coding.

Low-Level Tracking Methods

Tracking of Emotional Facial Expressions
One approach to measuring emotional expressions, such as facial expressions, involves 
automated tracking of the movement of facial landmarks and head position in 3D space 
from video (Jeni et al., 2017). In an illustrative project, 13-month-olds were exposed to a 
positive (bubbles) and a negative (toy removal) emotion-eliciting task. Facial features ex
hibited greater displacement, velocity, and acceleration in response to the negative than 
the positive task, and infant head position showed the same pattern (Hammal et al., 
2019). Together, the movement of facial features and head movement accounted for one 
third of the variance in manual behavioral affect ratings within each of the two conditions 
(Hammal et al., 2015). Manual coding confirmed higher levels of smiles during positive 
tasks and higher levels of cry-faces (which encompass distress and anger expressions) 
during negative tasks (Hammal et al., 2018). The results suggest that low-level tracking 
of facial and head movement can distinguish negative (cry-face) versus positive (smiling) 
expressions.

Tracking Movement and Orientation
Low-level physical features of interaction have also been used to predict expert measure
ments of psychological constructs such as synchrony and mutual engagement. Leclère 
and colleagues (2016) combined 2D and 3D sensor data from 10 high-risk (referred for 
neglect) and 10 low-risk 1- to 3-year-olds and their mothers to examine mother–infant in
teractions during a pretend tea party. Kinect depth and video tracking indicated that 
higher levels of mother motion were associated with lower expert ratings of maternal sen
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sitivity and intrusiveness, and higher ratings of infant avoidance. In addition, pauses in in
fant and parent joint movement were associated with higher ratings of maternal sensitivi
ty and higher levels of infant engagement. The findings suggest that relatively low-level 
physical features such as mother–infant proximity and activity level are promising mark
ers of caregiver sensitivity and intrusiveness and infant engagement, key indices of so
cioemotional development.

(p. 307) Unsupervised Machine Learning

A more radical approach to automated measurement involves direct unsupervised ma
chine learning of emotional interaction from video or audio. Prabhakar and colleagues 
(2010), for example, directly detected parent–child playful interaction, characterized by 
quasi-periodic spatiotemporal patterns, from posted YouTube videos. Likewise, Chu and 
colleagues (2017) automatically detected affective synchrony in videos of parents and in
fants engaged in face-to-face interaction. Using shape features of infant and mother 
faces, an unsupervised algorithm detected a priori areas of common action in overlapping 
segments of video that corresponded to infant and mother smile displays (see Figure 

21.1). This is a bottom–up validation of the importance of positive emotion communica
tion in early interaction. These approaches suggest the, as yet, unrealized potential of un
supervised machine learning to identify new patterns of early emotional interaction.

Computational Approaches to Replicate Human Coding

The most common approach to objective measurement is supervised training to replicate 
human expert measurements. One target is replication of the Facial Action Coding Sys
tem (FACS; Ekman & Friesen, 1992; Ekman et al., 2002)—applied to infants in BabyFACS 
(Oster, 2006)—an expert system for documenting anatomically based appearance changes 
based on facial Action Units (Lucey et al., 2007; Mahoor et al., 2008). We previously in
stantiated automated measurement of the presence and intensity of Action Units by using 
nonlinear manifold learning (Belkin & Niyogi, 2003) of data (p. 308) by combining active 
appearance and shape models to train support vector machines (SVMs; Messinger et al., 
2012). This approach yielded insights into similarities between early positive and nega
tive emotion expression, the structure of interactive positive affect, and early interaction 
dynamics.
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Figure 21.1  Discovered Synchronies in Six Parent– 
Infant Dyads.

Strong smiles and mutual attention were among the 
synchronies discovered between parents and their 6- 
month-old infants.

Reproduced from Chu, W.–S., De la Torre, F., Cohn, J., 
& Messinger, D. S. (2017). A branch-and-bound 
framework for unsupervised common event discov
ery. International Journal of Computer Vision, 123(3), 
372–391, Figure 11. https://doi.org/10.1007/ 
s11263-017-0989-7 Copyright © 2017, Springer Na
ture.

Positive and Negative Expression Similarities
Just as smiles are often used to index infant positive emotion, the cry-face is the preemi
nent infant expression of negative emotion. Importantly, both smiles and cry-face expres
sions can involve different degrees of mouth opening and Duchenne activation (i.e., eye 
constriction produced by the muscle orbiting the eyes). The Duchenne intensification hy
pothesis holds that Duchenne activation and mouth opening index the intensity of both 
smile and cry-face expressions (Bolzani–Dinehart et al., 2005; Darwin, 1872/1998). In sup
port, both mouth opening and the Duchenne marker indexed greater perceived positive 
valence in smile expressions and greater perceived negative valence of cry-face expres
sions. Next, the intensification hypothesis was tested using the Face-to-Face/Still-Face 
(FFSF) protocol (Mattson, Cohn, et al., 2013; but see Mattson, Ekas, et al., 2013). In the 
FFSF, a naturalistic face-to-face interaction is interrupted when the parent is asked to 
hold a still-face and not engage with the infant, and ends when the parent is asked to play 
again with the infant (Adamson & Frick, 2003; Tronick et al., 1978). During face-to-face 
play, which is expected to elicit positive emotion, smiles were more likely to involve eye 
constriction than during the still-face, which elicits negative emotion (see Figure 21.2). As 
predicted, the proportion of cry-faces involving eye constriction during the negative emo
tion-eliciting still-face was higher than during face-to-face play (Messinger et al., 2012). 
The results suggest that automated measurement of facial Action Units such as eye con
striction can produce insights into the structure of infant positive and negative emotion 
expression.

Interactive Positive Affect
Use of the active appearance models described above (Mattson, Cohn, et al., 2013) to 
measure the Action Units involved in infant and parent smiling produced insights into the 
expression of positive emotion and the dynamic structure of early interaction. Some pro
pose that only adult Duchenne smiling expresses positive emotion, whereas smiles with
out the Duchenne marker do not (Ekman & Friesen, 1982), although they do have other 
important social functions (see Mireault, this volume). Objective measurement of the in
tensity of smiling and eye constriction in the face-to-face interactions of two dyads indi
cated that Duchenne smiling was not a discrete entity but a continuous signal (Messinger 
et al., 2009). Specifically, the intensity of smiling and eye constriction were highly corre
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Figure 21.2  Eye Constriction (the Duchenne Marker) 
Indexes Positive and Negative Affective Intensity in 
the Face-to-Face/Still-Face (FFSF).

Smiling during the face-to-face play with the parent 
involved a higher proportion of smiling with eye con
striction than smiling during the still-face. The still- 
face involved a higher proportion of cry-faces with 
eye constriction than face-to-face play.

Adapted from Mattson, W. I., Cohn, J. F., Mahoor, M. 
H., Gangi, D. N., & Messinger, D. S. (2013). Darwin’s 
Duchenne: Eye constriction during infant joy and dis
tress. PloS One, 8(11), e80161, Figure 1. https:// 
doi.org/10.1371/journal.pone.0080161 © 2013 Matt
son et al. Licensed under the CC-BY 4.0.

lated in both mothers and infants. In sum, neither infants nor mothers appeared to exhib
it discrete Duchenne and non-Duchenne smiles during interaction (Messinger et al., 
2008). Instead, all features of smiling covaried together, suggesting they indexed a con
tinuum of positive emotion.

Interaction Dynamics
Messinger et al. (2009) went on to describe early caregiver–infant interaction using a con
tinuous measure of Duchenne smiling intensity derived from objective measurement 

(p. 309) of facial Action Unit intensity. This dynamic portrait of positive emotion uncov
ered variability in interactive synchrony at multiple temporal levels (see Figure 21.3). In 
Figure 21.3, changes in the zero-order correlation of infant and mother Duchenne smiling 
intensity illustrate variability in emotional synchrony over time. These changes suggest 
disruptions and repairs of emotional synchrony (Schore, 1994; Tronick & Cohn, 1989). 
Findings of dynamic changes in emotional synchrony are intriguing because a large body 
of research suggests that the degree to which parents adjust their own affective expres
sions to match those of their infants is associated with subsequent self-control, the inter
nalization of social norms, and attachment security (Beebe et al., 2010; Kochanska et al., 
2005; Halberstadt et al., this volume).

Coding Vocal Expressions
In the audio domain, the use of physical characteristics to index emotional components of 
vocal expression is common. Bourvis and colleagues (2018) employed automated mea
sures of infant and mother vocalization during the FFSF. These were supplemented with 
detection of an emotional component of mothers’ speech—infant-directed speech (e-IDS) 
—indexed by higher pitch and wider pitch range. Infants increased their rate of vocaliz
ing between the face-to-face and reunion episode of the FFSF, but mothers (p. 310) exhib
ited few changes in vocalization parameters. In the reunion episode, likewise, infants in
creased their rate of response to mothers’ e-IDS, rates of overlapping speech increased, 
and pauses in dyadic speech decreased. The results illustrate the potential of objective 
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Figure 21.3  Automated Interaction: Correlations Be
tween Infant and Mother Smiling Activity.

Above each segment of interaction is a plot of the 
windowed cross-correlations for successive 3-second 
segments of interaction. High positive correlations 
are deep red and high negative correlations are deep 
blue (see color bar at right). The horizontal midline 
of the plots indicates the zero-order correlation; 
lagged correlations are indicated above and below 
the midline.

Reproduced from Messinger, D. S., Mahoor, M. H., 
Chow, S.–M., & Cohn, J. F. (2009). Automated mea
surement of facial expression in infant–mother inter
action: A pilot study. Infancy, 14(3), 285–305. https:// 
doi.org/10.1080/15250000902839963 Copyright © 
2009 International Society on Infant Studies.

measures of the dyadic speech stream to disentangle patterns of emotional interaction 
following the still-face perturbation, a standard assessment of socioemotional functioning.

Coding Attachment
Attachment security is central to early social and emotional development, and indexes an 
infant’s ability to be comforted by a caregiver when distressed. Attachment security is 
typically assessed in the Strange Situation Procedure (SSP), which involves two brief sep
arations from and reunions with the parent. However, attachment assessment is conven
tionally assessed using expert subjective ratings. Using relatively low-level, Kinect-based, 
depth-video measurements of position and LENA (Language ENvironment Analysis)-de
rived estimates of infant crying, Prince et al. (2015) explored objectively measured attach
ment behavior in the reunion episodes of the SSP. Objective (p. 311) measurements of the 
frequency with which the infant made contact with the mother, the duration of that con
tact, the duration of infant crying, and the inverse of the velocity of the infant’s initial ap
proach to the mother accounted for a substantial proportion of the variance in, respec
tively, expert ratings of proximity seeking (approaching mother), contact maintenance 
(staying close to mother), resistance (to contact with mother), and avoidance (ignoring or 
moving away from mother). These results suggest that measurement of physical prox
emics and crying can provide insight into patterns of attachment previously captured ex
clusively via expert, but subjective, rating scales.

Chow and colleagues (2018) modeled “qualitative” changes in movement dynamics dur
ing the reunion episodes of the SSP by incorporating regime switching into a system of 
differential equations. Seeking a computational foundation for attachment theory, the re
searchers distinguished a proximity-seeking regime, in which infants tended to approach 
the parent, and an exploration regime, in which infants moved away from the parent to 
explore the room. As the infant attachment system became more activated in the second 
reunion, there was an increase in transitions to the proximity-seeking regime. These tran
sitions were heightened in the presence of infant vocalizations (often cries), which func
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tioned as signals of the infant’s attachment needs. These results speak to an emerging ca
pacity of researchers to computationally capture objectively measured infant- and dyad- 
specific emotional dynamics on a moment-to-moment basis to illuminate long-standing 
theories of early social motivation.

Modeling Approaches to Emotional Expression 
and Interaction
Computational approaches to the study of early emotion involve more than the use of ma
chine-learning algorithms to detect and measure expressive signals. Researchers are us
ing increasingly sophisticated models to characterize when and why emotional signals are 
used during interaction, and to describe the development of those emotional interactions 
(for an advanced approach, see Rudrauf et al., this volume). Here, we review research on 
the development of dyadic responses to infant distress, modeling of the predictability of 
smiling interactions, and the application of a novel framework for inferring infant goals 
during emotion-laden interactions.

Modeling Face-to-Face Interactions

Chow et al. (2010) applied computational and statistical modeling approaches to under
standing changes in infant and parent affective valence as they unfold in the FFSF. 
Specifically, a bivariate autoregressive model indicated the presence of both infant-to-par
ent and parent-to-infant interactive influence. Although each partner was (p. 312) respon
sive to the other, parents were more responsive to their infants than infants were to their 
parents. A stochastic regression approach applied within a multidyad time series re
vealed changes in interactive influence over time that were accentuated in the reunion 
episode following the still-face. The results point to the importance of quantifying change 
over time to characterize how dyads respond to one another emotionally (Chow et al., 
2014).

Goals of Face-to-Face interactions
Recently, our team used inverse optimal reinforcement modeling to infer likely infant and 
mother goals during their interactions (Ruvolo et al., 2015). Probable consequences of be
ginning and ending smiles on the durations of subsequent dyadic states such as mutual 
smiling were used to infer goals. Results of this modeling approach suggest that mothers’ 
likely goal is to increase the duration of mutual smiling (see Figure 21.4). However, in
fants’ likely goal is to increase the duration of epochs when mother is smiling but the in
fant is not. To achieve this goal, infants briefly smile until the mother smiles, and then 
they end their own smile. These results are surprising as they suggest infants do not act 
to increase the time they express positive emotion. Instead, infants smile as part of a 
dyadic process in which they create and then disengage from moments of mutual positive 
emotion expression (Stifter & Moyer, 1991).

(p. 313)
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Figure 21.4  Means of the Probability Distributions of 
Potential Mother and Infant Goals.

Error bars are 95% confidence intervals of the mean.

Reproduced from Ruvolo, P., Messinger, D., & Movel
lan, J. (2015). Infants time their smiles to make their 
moms smile. PloS One, 10(9), e0136492, Figure 1. 
https://doi.org/10.1371/journal.pone.0136492 
Copyright © 2015 Ruvolo et al. Licensed under CC 
BY 4.0.

Development Changes in Face-to-Face Interactions
We examined the predictability of infants initiating or ending a smile within particular 
face-to-face interactive contexts observed weekly from 1 to 6 months of age (Messinger et 
al., 2010). The mean, variance, and overall distribution of mutual smiling states became 
more similar over consecutive weekly sessions with age, such that individual dyads’ 
states of mutual positive affect became more predictable—to each partner, as well as to 
an outside observer—with development. Infants and mothers also increased the number 
of alternating turns in turn-taking interactions involving initiating and terminating smiles, 
suggesting that infants and mothers became more emotionally responsive to one another 
with age (Messinger et al., 2010). These findings suggest that repeated infant–parent in
teractions produce stable dyadic differences in emotional expressivity.

Developmental Consequences of Face-to-Face Interactions
Ekas and colleagues (2013) examined continuous trends in manually coded infant expres
sivity over the course of the still-face using multilevel models (see Figure 21.5). Group ef
fects indicated logarithmic decreases in infant gazing at the parent and smiling, and in
creases in infant cry-face expressions. At the level of individual trajectories, infant-gaze 
(but not smiling) trajectories were associated with later attachment security in a theoreti
cally meaningful fashion (Ainsworth et al., 1978). Infants with later insecure-avoidant at
tachment exhibited the steepest drop in gazing at the parent (disengagement with the at
tachment figure); infants with later insecure-resistant attachment exhibited the least drop 
in gazing (they remained engaged with the parent despite their unavailability); and se
curely attached infants exhibited a moderate slope of disengagement. The results suggest 
that dynamic modeling of changes in engagement over time during the negative emotion- 
eliciting still-face may be associated with later patterns of socioemotional security.

Modeling Naturally Occurring Elicitors of Emotional Interactions

Researchers have combined computational modeling (e.g., Hidden Markov Models, or 
HMMs) and statistical (e.g., cluster analysis) approaches to understanding infant–mother 
interaction in natural contexts—in this case, dyadic responses to childhood inoculations 
(Backer et al., 2018; Stifter & Rovine, 2015). Studies investigating interactive processes 
involved in the downregulation of infant distress following immunization have traditional
ly relied on correlational or contingency analyses to understand the effectiveness of ma
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Figure 21.5  Observed and Predicted Mean Frequen
cies of Gazes at Parent, Smiles, Positive Social Bids, 
and Cry-Face Expressions Over Time in the Still-Face 
Episode.

Frequencies refer to the number of frames per sec
ond (maximum 30) in which a particular behavior oc
curred. Social bids were defined as smiles in the 
presence of gazing at the parent. Predicted refers to 
the expected frequency based on a hierarchical lin
ear model containing an intercept and a linear term 
indexing behavior change proportional to log10 
transformation of the number of seconds elapsed. Al
though the model only contains linear terms, the log 
transformation allows for curvilinear change over 
seconds.

Reproduced from Ekas, N. V., Haltigan, J. D., & 
Messinger, D. S. (2013). The dynamic still-face effect: 
Do infants decrease bidding over time when parents 
are not responsive?’ Developmental Psychology, 
49(6), 1027–1035. https://doi.org/10.1037/a0029330 
Copyright © 2013, American Psychological Associa
tion.

ternal soothing behaviors on infant distress. However, such approaches are unable to cap
ture the influence of multiple simultaneous soothing behaviors that occur in response to 
infant distress. HMMs indicated that infants utilized more complex responses to aversive 
stimuli and became more organized and efficient in their soothing behaviors with age 
(Stifter & Rovine, 2015). Cluster analyses indicated that the fit between infants’ capacity 
to be soothed (indexed by temperamental factors) (p. 314) and appropriate and responsive 
changes in maternal soothing behaviors over time determined infant soothability. These 
findings suggest the potential of an integrative approach to modeling the reciprocal inter
play of emotional communication between parent and child over time (Backer et al., 
2018).

Modeling Emotional Vocalizations

Infant cries are a central focus of automated measurement research on emotional compo
nents of the vocal signal. Infant crying is a universal distress signal that becomes a more 
heterogenous negative emotion expression over the first year (Gustafson & Green, 1991). 
The commercially available LENA technology employs Gaussian mixture models to detect 
adult speech, infant speech, and emotion-laden nonspeech vocalizations (which tend to be 
cries, and are referred to as such here).

Temporal and Interactive Dynamics of Crying
In day-long home recordings, Fields–Olivieri and Cole (2019) found that mothers were 
less likely to respond to toddlers’ cries than toddlers’ word-like vocalizations. However, 
when mothers did respond to toddlers’ cries, the toddlers were more likely to subsequent
ly produce speech-like vocalizations rather than additional cries (Fields–Olivieri & Cole, 
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2019). With respect to temporal structure, Abney and colleagues (2017) found that home- 
recorded cries in the first year exhibited a higher degree of clustering in time (p. 315)

(temporal heterogeneity) than speech-like vocalizations. Likewise, among 1- to 2-year- 
olds in an early intervention preschool classroom, we found that vocal expressions of neg
ative affect perpetuated themselves in time (the duration of one cry predicted the dura
tion of the next) and cries tended to occur in clusters over the day (burstiness; Messinger 
et al., 2019). Together, these results highlight the power of objective measurement of 
cries to shed light on the temporal structure of negative affect and the dynamics of early 
communication using day-long samples of naturally occurring behavior.

Automated Measurement and Modeling to Un
derstand Atypical Development
Researchers have begun using automated measurement, including electrophysiological 
approaches, to measure individual differences in children with autism spectrum disorder 
(ASD). ASD is a pervasive disorder of social communication that impacts both nonverbal 
and verbal interaction (American Psychiatric Association, 2013; see Conner et al., this vol
ume). We begin by describing electrophysiological measurement of arousal and then re
view its application to ASD. We then review work using machine learning of behavior to 
index ASD symptoms during diagnostic assessments.

Tracking Arousal

Physiological indices of arousal are a key index of emotional dynamics. Electrodermal ac
tivity (EDA) measured by skin conductance, for example, can index sympathetic nervous 
system (SNS) arousal, providing a physiologic indicator of children’s emotional responses 
and regulation (Benedek & Kaernbach, 2010; Chow et al., 2010; Rogers & Ozonoff, 2005). 
Measurement of EDA captures the SNS “fight or flight” response and considers both the 
slow-changing levels of arousal (tonic EDA) and immediate responses to the environment 
(phasic EDA; Fowles, 2007). Phasic changes in EDA are the result of fluctuations in ec
crine sweat function in response to sympathetic activation (Fowles, 2007). EDA is widely 
used as an indicator of emotional arousal (Bouscein, 2012). In neonates, noxious stimuli— 

including a heel-prick procedure (Harrison et al., 2006) and high sound levels (Salav
itabar et al., 2010)—have been tied to sharp, sustained increases in EDA. By contrast, 
cessation of nursing is associated with a reduction in EDA below baseline levels (Harrison 
et al., 2006).

Electrodermal Activity in Children With ASD

Recent technological developments have enabled ambulatory measurement of EDA via 
wearable wrist sensors approximately the size and appearance of a watch (Poh (p. 316) et 
al., 2010, 2012). These ambulatory measurements provide a unique understanding of indi
vidual differences in response to environmental stimuli and interactions. In a sample of 
children with ASD (4–10 years), the concordance of ambulatory measures of parent and 
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child EDA during a free-play period was lower in dyads in which the child had higher 
autism symptoms (Baker et al., 2015). Over developmental time, it is possible that autism- 
related social impairment interrupts the development of synchronous interactions be
tween child and parent. Toddlers with ASD, with higher restricted and repetitive behavior 
scores on the Autism Diagnostic Observation Schedule or ADOS-2 (Lord et al., 2012)—the 
gold-standard, play-based assessment of ASD—have greater increases in skin conduc
tance level (SCL) in response to mechanical toys as opposed to passive toys (Prince et al., 
2017). This lends credence to the idea that children with higher autism symptoms are dif
ferentially reactive to specific stimuli in the immediate environment in a way that may 
preclude concordance with the parent. In both children with typical development and 
children with ASD, low EDA appears to be a risk factor for externalizing behavior prob
lems in the context of harsh or low-quality parenting (Baker et al., 2017; El–Sheikh & 
Erath, 2011). Strikingly, instances of severe physical aggression for inpatient, minimally 
verbal, school-age children with ASD can be predicted one minute ahead based on ambu
latory monitoring of sympathetic (EDA) and parasympathetic (cardiac) arousal (Goodwin 
et al., 2018). The ambulatory measurement of arousal is a promising tool for understand
ing individual differences in how children with and without ASD interface with their so
cial and physical environments.

Measuring ASD Symptoms With Machine Learning

During the ADOS-2 assessment of ASD, a trained clinical examiner assesses autism symp
toms. We were interested in predicting ADOS-2 social-affect symptoms, which index 
deficits in the quantity and quality of vocal initiations, gesturing, and facial expressions 
including smiles, as well as unusual eye contact. Processing video with the Affdex system 
(Stockli et al., 2018), objective measurements of social smiling to the examiner and par
ent from video were inversely associated with ADOS social-affect symptoms (Ahn et al., 
2019; Moffitt et al., 2019). LENA measures of adult–child turn-taking during the ADOS 
were also moderately associated with social-affect symptoms such that higher turn-taking 
was associated with lower symptom levels. We next used deep learning to directly predict 
social-affect symptoms from the ADOS-2 audio stream (Sadiq et al., 2019). Deep-learning 
algorithms take raw data as input and represent features of these data in sequential lay
ers whose output can be a classification (Bishop, 2006; LeCun et al., 2015) of audio or 
video signals (Lavner et al., 2016). We combined neural networks with recurrence and 
memory features to leverage temporal sequencing with a Synthetic Random Forest—a 
nonlinear algorithm in which the sequential interplay of input features correspond to the 
branches of virtual trees—to predict outcomes (Lu et al., 2018). This deep-learning ap
proach predicted social-affect severity scores (p. 317) more effectively than the pretrained 
LENA algorithm (Sadiq et al., 2019). Together, the results highlight the potential of differ
ent forms of machine learning to directly estimate emotional symptoms in children being 
assessed for ASD (Hashemi et al., 2012).
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Conclusions
Infants’ early interaction and emotional expressions set the stage for emotional function
ing throughout the life span. Objective measurement of behavior and computational mod
eling are providing insights into how infants express emotion, and how emotional interac
tions unfold in real time and over development. Applications of these approaches to chil
dren with ASD suggest the potential utility of objective measurement of the emotional 
component of autism symptoms, and the role of psychophysiological measurements of 
arousal in understanding individual differences in children with ASD.

Future Directions
Objective measurement of children’s emotional behavior by means of deep learning is in 
its infancy. The synthesis of multimodal emotional parameters (e.g., facial, vocal, move
ment) remains an important goal, as does the integration of these objective measure
ments with psychophysiological indices of constructs such as arousal. Likewise, the abili
ty of automated measurement to facilitate studies of children’s emotional functioning 
over substantial periods of time and multiple contexts (e.g., home, preschool, clinic) en
dures as a goal, as does the objective study of children’s emotional interactions with 
peers as well as parents. Finally, computational modeling of emotional interaction is in
creasing in its ability to understand moment-to-moment changes in affective states. How
ever, modeling of objective measurement to better understand emotional development re
mains aspirational.
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