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Abstract Paralinguistic cues are the non-phonemic aspects of human speech that
convey information about the affective state of the speaker. In children’s speech,
these events are also important markers for the detection of early developmental
disorders. Detecting these events in hours of audio data would be beneficial for clin-
icians to analyze the social behaviors of children. The chapter focuses on the use
of spectral and prosodic baseline acoustic features to classify instances of children’s
laughter and fussing/crying while interacting with their caregivers in naturalistic set-
tings. In conjunction with baseline features, long-term intensity-based features, that
capture the periodic structure of laughter, enable in detecting instances of laughter
to a reasonably high degree of accuracy in a variety of classification tasks.

1 Paralinguistic Event Detection in Toddlers’ Interactions with
Caregivers

Paralinguistic cues are non-phonemic aspects of human speech that are character-
ized by modulation of pitch, amplitude, and articulation rate [?]. These cues convey
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information about the affective state of the speaker and can be used to change the
semantic content of a phrase being uttered. For example, the phrase, “Yeah right”,
when modulated with laughter indicates sarcasm [?]. Paralinguistic cues encompass
the commonly produced ones such as crying and coughing to those that are widely
considered to be social taboos such as belching and spitting [?].

Charles Darwin, in his seminal work on emotions in animals, described laughter
as a paralinguistic cue used primarily to convey joy or happiness [?]. Laughter is a
signal which consists of vowel-like bursts that has been found to be a highly variable
signal. Adults produce laugh-like syllables, which are repetitive in nature and the
production rates in laughter are higher than those of speech-like sounds [?]. Laugh-
ter also tends to have a higher pitch and variability compared to speech. Laughter
is a socially rich signal that manifests itself in different forms. Laughter bouts have
been classified as being “song-like” which consists of modulation of pitch, “snort-
like” with unvoiced portions, and “unvoiced grunt-like” [?]. Furthermore, research
has used laughter labels based on the type of stimulus used to produce it [?]. This
includes joy, taunting, schadenfreude, and tickling. Although, laughter is considered
to be a signal for indicating positive affect, the perception of laughter can change
based on the context in which it is used. In speed dating situations, women were
rated to be flirting if they laughed while interacting with men [?].

Paralinguistic cues, such as laughter and crying, play an important role in chil-
dren’s early communication, and these cues are useful in conveying the affective
state of the speaker. The cues have also been found to differ when infants and chil-
dren with autism spectrum disorder (ASD) are compared to controls [?, ?]. The
diarization of such events in extended recordings has shown preliminary evidence
as a utility in the diagnosis detecting pathologies [?]. These events can also be used
to analyze children’s communicative behaviors in social interactions with their care-
givers. Laughter is primarily used to express positive affect and has been found to
usually follow a state of anticipatory arousal, especially tickling [?]. Fussing/Crying
could indicate that the child is upset or disinterested in the task being initiated by
the caregiver in a dyadic setting.

1.1 Databases

The research will focus on using long-term syllable-level features to detect laughter
in children’s speech. For this purpose, three datasets will be used. For detecting
laughter in children’s speech, we have used the MMDB, Strange Situation, and the
IBIS dataset datasets.

1.1.1 Multi-modal Dyadic Behavior Dataset

The Multi-modal Dyadic Behavior (MMDB) dataset [?] consists of recordings of
semi-structured interactions between a child and an adult examiner. The recordings



Paralinguistic Analysis of Children’s Speech in Natural Environments. 3

are of multi-modal in nature and consists of video, audio, and physiological data.
The sessions of the MMDB were recorded in the Child Study Lab (CSL) at the
Georgia Institute of Technology, Atlanta, USA.

The protocol in this study is the Rapid ABC play protocol which is a short (3-5
minute) interaction between a trained examiner and a child whose interaction skills
are assessed based on social attention, back-and-forth interactions, and nonverbal
communication which have been indicative of socio-communicative milestones.
The Rapid-ABC consists of five stages, which is illustrated in Figure ??, and these
consist of greeting the child by calling his or her name, rolling a ball back-and-forth
with the child, reading a book and eliciting responses from the child, placing the
book on the head and pretending it to be a hat, and engaging the child in a game of
tickling.

Fig. 1 Stages of the dyadic interaction between child and examiner in the MMDB.

The annotations of the MMDB dataset were performed by research assistants in
the CSL and were coded for the different stages of the Rapid-ABC protocol. For
the speech modality, the child’s vocalization events such as speech, laughter, and
fussing/crying along with the examiner’s transcribed speech events were annotated.

The database currently has recordings from 182 subjects with 99 males and 83
females (aged 15-29 months) and there were 54 follow up visits. The annotations of
the social behaviors were performed using the open-source annotation tool ELAN
and the screenshot of the ELAN software with the annotations for one of the MMDB
sessions is shown in Figure ??.

The dataset is significant in a multitude of ways, mainly from the fact that this
represents one of the very few datasets available to the scientific community which
has a rich variation in the number of subjects and the range of ages. From the speech
perspective, there are vocalizations involving laughter and fussing/crying and are
present in a significant number with most of the laughter samples emanating during
the tickling stage of the Rapid-ABC. The child’s vocalizations are recorded using
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Fig. 2 MMDB session annotations in ELAN.

lavalier microphones which are in close proximity to the child and are generally free
from any type of noise. From the multi-modal perspective, this dataset represents a
challenging prospect to analyze the interaction of laughter and smiling in children
and fuse information from audio and video sources to detect instances of laughter.

1.1.2 Strange Situation

The Strange Situation Procedure [?] is used for analyzing attachment behaviors
of children with their caregivers. The strange situation protocol consists of eight
episodes, each of which is three minutes in duration. In episodes 1–3, the child (in
the company of the caregiver) is first confronted with a strange environment (a play
room) and then with a stranger (an unknown research assistant). During the fourth
episode, the caregiver leaves the room and the infant is left with the stranger. The
caregiver returns during the fifth episode and the stranger leaves. The caregiver then
leaves again (episode 6), which means the infant is alone in the room. The stranger
returns (episode 7), and eventually the caregiver also returns(episode 8).

The stressful situations which elicit attachment behaviors in children include the
environment in which the child is in, the stranger with whom the child is with, and
the separations from the caregiver. The goal is to evaluate how the child reacts to be-
ing reunited with the mother, specifically, whether he/she approaches her, is soothed
by the contact, and returns to play. Attachment behaviors with the caregiver on re-
union lead to classifcation into one of three categories: secure, insecure avoidant,
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or insecure resistant. These attachment styles along with their prototypical crying
patterns during reunion episodes are shown in Table ?? [?]. Crying is an important
behavior in attachment classification from the Strange Situation Procedure.

Table 1 Classification criteria using crying in the Strange Situation Procedure for the three differ-
ent attachment categories as described by Waters, 1978

Attachment
behavior Crying

Avoidant Low (preseparation), high or low
(separation), low (reunion)

Secure Low (preseparation), high or low
(separation), low (reunion)

Ambivalent
Occasionally (preseparation) , high

(separation), separation) moderate to high
(reunion)

The Strange Situation dataset analyzed in was provided by Daniel Messinger
from research conducted at the University of Miami, Coral Gables, FL, USA. This
dataset consists of strange situation recordings from 34 infants of 12 months of age
and were recorded using the LENA device [?]. The annotations provided by the col-
laborators consists of child’s speech, crying, and laughter. The dataset is beneficial
from the point of view of testing models trained on the MMDB and testing it on
the Strange Situation corpus. The importance of the dataset emanates from the fact
that the recordings come from noisy conditions and the type of crying produced
in the Strange Situation consists of wailing while that of the MMDB is more of
whimpering in nature.

1.1.3 Infant Brain Imaging Study

The Infant Brain Imaging (IBIS) study is an ongoing longitudinal study of infants at
high and low familial risk for ASD. The study includes [?, ?] a dataset of recordings
consisting of infants’ speech which has been recorded in the homes of their care-
givers and external environments such as grocery stores, playschools, and shopping
malls. The IBIS study includes four clinical sites: University of North Carolina,
Chapel Hill; University of Washington, Seattle; The Childrens Hospital of Philadel-
phia; and Washington University, St. Louis, and data coordination at Montreal Neu-
rological Institute, McGill University. The current dataset includes a subsample of
IBIS participants from the University of North Carolina and The Childrens Hospital
of Philadelphia. Data was recorded at 9 and 15 months of age generating a total of
85 recordings. The distribution of the subjects based on their risk factors is shown
in Table ??.

The recordings of the infants’s interactions with their caregivers are 16 hours in
length and were recorded using the Language Environment Analysis (LENA) device
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Table 2 Risk factor of ASD for the subjects in the IBIS study at 9 and 15 months of age.

Low Risk High Risk
9 months of age 16 37
15 months of age 7 25

which is a portable digital language processor. The LENA device is a light-weight
audio recorder which can easily fit inside the vest worn by an infant. The recorder,
shown in Figure ??, has the ability to record single channel audio data at a sampling
rate of 16 kHz.

Fig. 3 LENA audio recording device used for infant vocal development analysis.

The software provided along with the recorder is a data mining tool, LENA Ad-
vanced Data Extractor (ADEX), which can potentially be useful for analyzing the
various segments in day-long recordings. The tool has the capability of segmenting
and parsing various information about the audio events of interest. These include
the infant’s and adult’s vocalizations, cross-talk, background noise, electronic noise,
and turn-taking events [?].

The LENA software does not provide a fine-grained analysis of the infant’s non-
verbal vocalizations and does not provide timestamps of when the infant laughed,
cried, or produced other paralinguistic vocalizations. These important measures are
potentially valuable in understanding the social behaviors of infants when they inter-
act with their caregivers.In the context of infants at high-risk for ASD, the atypical
characteristics of paralinguistic vocalizations may inform later development with
the potential to be a useful component to early detection of ASD. For the data col-
lected in the study, a research assistant at the Georgia Institute of Technology la-
beled the segments using the various categories outlined in Table ??. The reasoning
behind relabeling the segments is to ensure that there is ground truth for the paralin-
guistic events and to use a majority vote based on the outputs of three voice activity
detectors (VAD).
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Table 3 Labels used for the segments using the annotation tool developed at Georgia Institute of
Technology for the IBIS dataset.

Type Category of sound event

Child
Speech, other vocalizations,

fussing/crying, crying, laughter,
other child

Adult Male and female (near and far)
Noise Toys, overlap, other

The importance of this dataset lies in the fact that the recordings were collected
“in-the-wild” and constitute an important move forward in the scheme of validating
models trained in laboratory environments, which are often sound-treated.

The MMDB dataset, which consists of speech, laughter, and crying samples,
was used as the training data and the other two datasets were used as testing data.
Table ?? shows the number of samples along with the durations (mean ± standard
deviation) for all the datasets.

Table 4 Number of training and testing examples of MMDB, Strange Situation, and IBIS datasets
for speech, laughter, and fussing/crying along with the mean and standard deviation of duration of
the samples.

Dataset Type of
vocalization

Number of
samples (N) Duration(mean±standard deviation)

MMDB
Speech 200 1.14±0.66

Laughter 128 1.31±1.28
Fussing/Crying 142 2.65±4.21

Strange Situation
Speech 171 1.23±0.92

Laughter 11 1.12±0.90
Fussing/Crying 129 1.68±0.83

IBIS
Speech 510 1.23±0.92

Laughter 48 1.12±0.90
Fussing/Crying 421 1.68±0.83

1.2 Long-term intensity-based feature

A new measure to capture the long-term periodic structure of laughter using the en-
ergy or intensity contour is introduced below. The work by [?] uses a priori infor-
mation about the frequency range (4–6 Hz) in which the sonic structure of laughter
is apparent in the magnitude spectrum of the intensity contour of laughter. The ad-
vantage of this measure is that it is not dependent on the bandwidth of the audio
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signal and can be generalized for signals recorded at various sampling rates. The
apriori information about the frequency with which the sonic structure manifests
will not be used but uses window lengths of varying sizes that can encompass dif-
ferent syllable lengths. In the first step, the intensity or energy contour of the speech
signal is computed using a Hamming window of 30 ms length and 10 ms overlap as
shown in (??).

E[n] =
n

∑
n=1

x[n]2 (1)

, where x[n] is the windowed speech signal frame and E[n] is the energy or inten-
sity of the signal.

Fig. 4 Waveform of laughter sample from the MAHNOB [?] database along with the spectrogram
displayed below it.

In Figure ??, the repetitive structure of laughter can clearly be seen in the spec-
trogram, while such a structure was not apparent for speech as seen in Figure ??.
Using the intensity contour, the Hamming window length was again varied from 5
to 45 frames (in steps of 4) for children’s laughter with different overlap window
lengths. The reason for using different window lengths is due to the fact that these
were the ranges of window lengths that resulted in good accuracies as will be dis-
cussed in Section ??. From this syllable-level segment, the autocorrelation of the
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Fig. 5 Waveform of speech sample from the MAHNOB database [?] along with the spectrogram
displayed below it.

intensity contour is computed as shown in (??).

Rxx[ j] = ∑
n

xnx̄n− j (2)

Then, a polynomial regression curve was fitted to the one-sided autocorrelation
function and the absolute error was computed between the curve and the autocorre-
lation function. The idea behind computing the error was that the greater the periodic
structure of the signal, which would be the case for laughter, the higher would be
the error than for speech. Since the children’s audio signals might consist of noise
or cross-talk, we varied the degree, d, of the polynomial regression curve from 1 to
3. Also, for the children’s speech there were four different overlap window lengths
used ranging from 12.5% to 50% overlap. This resulted in 36 low-level descriptors
for children’s speech. There were 14 statistical measures computed from the features
and these are shown in Table ??.
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Table 5 Statistical measures evaluated for syllable-level intensity features.

Statistical Measure

Arithmetic mean, median, mode, standard deviation, maximum
and minimum values, flatness, skewness, kurtosis, 25th quartile,
75th quartile, inter-quartile ranges, 1st percentile, 99th percentile

The baseline acoustic features were extracted using the open-source audio feature
extraction tool, openSMILE [?]. There were 57 low-level descriptors (LLD), shown
in Table ?? extracted using a 30 ms Hamming window with 10 ms overlap. The delta
and delta-delta measure for each LLD was also computed and the number of LLDs
was 171. There were 39 statistical measures, shown in Table ??, computed from the
LLDs for each sample. The dimensionality of the feature set using openSMILE was
6669.

Table 6 Spectral and prosodic acoustic features extracted using openSMILE.

Feature
Number of
low-level

descriptors

Log-energy 3
Magnitude of Mel-Spectrum 78

Mel-frequency Cepstral Coefficients 39
Pitch 3

Pitch envelope 3
Probability of voicing 3

Magnitude in frequency band (0−250Hz, 250−650Hz,
0−650Hz, 1000−4000Hz, and 3010−9123Hz) 16

Spectral Rolloff (25th ,50th, 75th, and 90th percentile) 12
Spectral Flux 3

Spectral Position (Centroid, Maximum, and Minimum) 3
Zero-Crossing Rate 3

Table 7 Statistical measures evaluated for openSMILE features.

Statistical Measure

Max./Min. value and respective relative position within input,
range, arithmetic mean,3 linear regression coefficients and linear

and quadratic error, standard deviation, skewness, kurtosis,
centroid, variance, number of non-zero elements, quadratic,
geometric, absolute mean, arithmetic mean of contour and

non-zero elements of contour, 95th and 98th percentiles, number of
peaks, mean distance from peak, mean peak amplitude, quartile 1 -

3, and 3 inter-quartile ranges.
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1.3 Results

Models were trained using the MMDB dataset and tested the models on the Strange
Situation and IBIS datasets. The results will be discussed in two categories; the
first set of results deals with classifying laughter against combinations of various
categories (speech, fussing/crying, and non-laughter which consists of speech and
fussing/crying) using only the top 50 features ranked by CFS syllable-level inten-
sity features and the second category will be the combination of baseline acoustic
and syllable-level features by ranking the top 100 features using CFS. The selected
features for the three classification tasks are shown in Figure ??.

Fig. 6 Features selected for the three classification tasks viz. speech vs. laughter, fussing/crying
vs. laughter, and non-laughter vs. laughter

Using the MMDB corpora for training, the results of the 10-fold cross validation
are shown in Table ?? for the various classification tasks using the top 50 syllable-
level features using CFS.

Table 8 Accuracy and recall of 10-fold cross-validation with training on MMDB corpus using the
top 50 syllable-level features using a cost-sensitive linear kernel SVM classifier.

Speech vs. Laughter Whining vs. Laughter Non-Laughter vs. Laughter

Accuracy 73.17% 71.85% 75.53%
Recall 72.23% 71.81% 74.63%

Using the MMDB corpora for training, the results of the 10-fold cross validation
are shown in Table ?? for the various classification tasks using the top 50 syllable-
level features using CFS.
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Table 9 Accuracy and recall of 10-fold cross-validation with training on MMDB corpus using the
top 100 baseline and syllable-level features using a cost-sensitive linear kernel SVM classifier.

Speech vs. Laughter Whining vs. Laughter Non-Laughter vs. Laughter

Accuracy 84.75% 79.25% 81.27%
Recall 84.82% 78.77% 80.04%

Using the MMDB corpora for training and testing on the IBIS , the results of the
test sets are shown in Table ?? for the various classification tasks using the top 100
baseline and syllable-level features using CFS.

Table 10 Accuracy and recall of training on MMDB corpus and testing on IBIS corpus using the
top 100 baseline and syllable-level features using a cost-sensitive linear kernel SVM classifier.

Speech vs. Laughter Whining vs. Laughter Non-Laughter vs. Laughter

Accuracy 85.12% 81.02% 82.53%
Recall 85.26% 81.12% 79.94%

Using the MMDB corpora for training and testing on the Strange Situation corpus
, the results of the test sets are shown in Table ?? for the various classification tasks
using the top 100 baseline and syllable-level features using CFS.

Table 11 Accuracy and recall of training on MMDB corpus and testing on Strange Situation
corpus using the top 100 baseline and syllable-level features using a cost-sensitive linear kernel
SVM classifier.

Speech vs. Laughter Whining vs. Laughter Non-Laughter vs. Laughter

Accuracy 84.06% 90% 83.6%
Recall 87.26% 90.41% 87.12%

The results indicate that the syllable-level features are capable of detecting laugh-
ter from speech, fussing/crying, and , when both these events are treated as a single
class, non-laughter to a reasonably high degree of accuracy and more importantly,
a high recall rate as well. The significance of these results lie in the fact that the
features trained on the MMDB dataset generalize well when applied to the Strange
Situation and IBIS datasets which consists of data recorded in completely different
conditions, subjects with a different age group, and with subjects at risk of ASD.
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2 Multi-modal Laughter Detection in Toddlers’ Speech When
Interacting With Caregivers

2.1 Introduction

Smiling is one of the most common facial expressions used while interacting with
friends or peers [?]. Smiles can manifest as Duchenne smiles, activated using the
Zygomaticus Major and Orbicularis Oculii muscles concurrently, which are used
to express positive affect. When only the Zygomaticus Major muscle is activated,
the smile is considered to be forced [?]. Smiles, like laughter, can also be used to
mask the true affective state of an individual. False smiles can be used to indicate
that a person is happy while masking the true affective state which could range from
deception to disgust [?].

There is limited understanding about the interaction between smile and laugh-
ter and one [?] hypothesis is that smiles have their origins in the silent bared-teeth
submissive grimace of primates, and laughter evolved from the relaxed open-mouth
display. Since, spontaneous smiles have been linked with laughter [?], an attempt
has been made to use the information about smiles to reduce false positives in de-
tecting laughter using only the audio modality.

The research by [?] discusses about performing multi-modal laughter detection
in adults’ speech and shows the improvement obtained from fusing the features from
the audio and vision modalities compared to using either one of them. A logical ex-
tension of this work would be to analyze the data from children’s interactions with
caregivers. Previous research on smiling type and play type during parent-infant
play has shown varying conclusions about the frequency of smiling with infants
smiling more at the mother compared to the father during visual games, object play,
and social games. While research which showed smiling preference for fathers in-
volved games of physical and idiosyncratic nature.

2.2 Database

The MMDB corpus was used for the purpose of analysis and the modalities used
were the audio from the lavalier microphones and the Canon side-view cameras
for analyzing the smiles of the child. For the purposes of detecting laughter, the
problem was treated as a laughter vs. non-laughter classification problem where
the non-laughter elements included child’s speech and fussing/crying. There were
a number of difficulties experienced while analyzing the videos of the child. One
major problem was that OMRON’s smile tracker was used to initialize the face of
the child automatically and given that the parent was also in the view of the camera,
the parent’s face would be mistaken for the child’s face. To overcome this issue, a
manual selection of the child’s face was done by selecting the frame when the child’s
face was detected by the smile tracker. This process mitigated the false positives of
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the child’s face being detected. The other issues that were faced while detecting
the child’s face were when the face was obscured from the view of the camera due
to the examiner or parent moving in front of the child, the child turning his or her
face away from the view of the camera, or the child moving away from the view of
the camera by getting distracted by an object in the room. These were issues that
could potentially be addressed by using information from the AXIS cameras, but
that would be pertinent to whether the child’s face can be accurately detected using
them.

Having detected the child’s face and extracting the information about the smile,
the child’s speech annotations were lined up with the frame-level results of the
Canon videos. The annotations in ELAN are relative to the Canon videos and there-
fore the synchronization is a simple process of lining up the various events belong-
ing to other modalities. Once the annotations have been lined up, we need to take
into account that the smile detector can produce false negatives due to the tracker
failing to track the face when the child’s face is in view. For this purpose, we used a
threshold method wherein only the laughter and non-laughter annotations are used
when for more than 70% of the duration of the event, the smile detector produces a
valid output (a vector of non-zero features).

2.3 Feature Extraction and Selection

The openSMILE features along with the syllable-level intensity features, described
in Section ??, were extracted from the laughter and non-laughter samples. For
the visual features, the OMRON Okao smile detection system was used to ex-
tract the frame-level features and the feature that were used for analyses was the
smile strength. There were two methods employed for feature selection. The first
technique is the combination of the filter and wrapper-based techniques with the
filter-based technique used being the correlation-based feature selection technique
followed by the wrapper-based technique which is the sequential-forward selec-
tion method with a linear kernel SVM as the base classifier. The other technique
employed was using a restricted Boltzmann machine (RBM) with contrastive diver-
gence and this is widely used in image classification and of late, in speech recogni-
tion for the purposes of learning deep learning models.

An RBM is a undirected graphical model which consists of bipartite graphs.
There are two types of variables in the architecture, a set of visible units, V , and
followed by hidden units, H. There are no connections within V and H, as shown in
Figure ??, and thus each set of units is conditionally independent of the other.

For every possible connection between the binary visible, v, and hidden units, h,
the RBM assigns an energy and this is given using the equation shown in (??)

E(v,h) =−∑i, j Wi jvih j−∑i aivi−∑ j b jh j. (3)
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Fig. 7 Structure of a restricted Boltzmann machine (RBM) with connections between visible layer,
V , and hidden layer, H.

where vi and h j are the binary states of the visible unit i and hidden unit j. The
a and b are the biases of the visible and hidden units respectively. Wi j represents the
weights or the strength between the visible and hidden units.

The conditional probabilities of each of the visible and hidden units is given in
(??) and (??),

p(h j = 1 | v) = σ(b j +∑i Wi jvi) (4)

p(vi = 1 |h) = σ(ai +∑ j Wi jh j) (5)

where

σ(x) =
1

1+ e−x (6)

is the logistic function.
The probability that is assigned to every possible joint configuration (v,h) is

given in (??),

p(v,h) =
e−E(v,h)

Z
=

e−E(v,h)

∑u,g e−E(u,g)
(7)

where Z is the partition function. The marginal distribution of the visible units is
given as

p(v) = ∑h p(v,h) (8)

and the gradient of the average log-likelihood is given as

∂ logp(v)
∂wi j

=< vih j >0 −< vih j >∞ (9)
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The < . >∞ cannot be computed efficiently as it involves the normalization con-
stant Z and it is a sum of over all configurations of the variables making the problem
intractable. This can be avoided by using the contrastive divergence (CD) algorithm
by sampling from the distribution using Gibbs sampling. This involves setting the
initial values of the visible units to the feature set and then sampling the hidden units
given the visible units. After this, the visible units are then sampled using the hidden
units and the process is alternated between the two. This is shown in Figure ??.This
sampling requires using the conditional distributions given in (??) and (??) which
are easy to compute. The CD algorithm is given as,

∂ logp(v)
∂wi j

=< vih j >0 −< vih j >k (10)

Fig. 8 Working of the contrastive divergence (CD) algorithm between the hidden and visible units
in an RBM.

For the purposes of research in this section, the Gaussian- Bernoulli RBM was
used to deal with feature sets that used acoustic and visual modalities. In this
method, the visible units are treated as originating from a Gaussian distribution and
the hidden units are binary. The equation of the energy function becomes,

E(v,h) =−∑i
(vi−ai)

2

2σ2
i
−∑i, j

vi

σ2
i

h jWi j−∑ j b jh j. (11)

The conditional probabilities of the visible and hidden units are modified as
shown in (??) and (??).

p(vi = v |h) = N (v |ai +∑ j Wi jh j,σ
2
i ) (12)

p(h j = 1 | v) = σ(b j +∑i Wi j
vi

σ2
i
) (13)

where N (· | µ,σ2) is a Gaussian probability density function with mean µ and
variance σ2.
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2.4 Methodology

Two feature selection methodologies for the multi-modal analysis were employed.
In the first part, as shown in Figure ??, we used the CFS on the acoustic features and
concatenated with the visual features followed by passing the feature set through
a sequential forward selection (SFS) with the base classifier being a linear kernel
SVM.

The features selected using this scheme is shown in Table ?? and include spectral
centroid, syllable-level intensity, and smile confidence features.

Table 12 Acoustic and visual features selected using feature selection based on combination of
filter and wrapper-based methods using the MMDB dataset.

Feature Number of features selected
Spectral centroid 2

Syllable-level Intensity Autocorrelation
Error 1

Smile confidence 1

Fig. 9 Architecture of the system employed for multi-modal laughter detection using combination
of filter and wrapper-based feature selection schemes.

For the multi-modal analysis using RBMs, the method employed is the bimodal
deep belief network (DBN) architecture [?]. Here, the lower layers learn the au-
dio and video features separately followed by concatenating and feeding them to
another RBM, as shown in Figure ??, which learns the correlations between the var-
ious modalities. For this architecture, we employed the Gaussian-Bernoulli RBM
for the first layers followed by a Bernoulli-Bernoulli RBM for the top-most layer.
This is a similar architecture that has been previously used in multi-modal emotion
recognition by [?]. The only parameter being varied is the number of hidden units
with all the other parameters such as learning rate, number of iterations for the CD
algorithm, and batch size being constant. The number of hidden units varied from
10 to 50 with a step size of 10. A grid search is performed for finding the configu-
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ration of the number of hidden units for each RBM that results in the best accuracy
using a 10-fold cross-validation scheme.

Fig. 10 Architecture of the system employed for multi-modal laughter detection using RBMs.

2.5 Results

Owing to the fact that the number of samples used in this study was small due to
the various limitations in analyzing the videos as described earlier, a 10-fold cross-
validation was performed on the dataset with a linear kernel SVM. Considering the
imbalance in the training data, we used a cost-sensitive classification scheme with
the cost matrix given as,

C =

[
0 1

1.81 0

]
(14)

Classification using the acoustic features from the filter based method, where the
top 100 audio features are ranked, resulted in a confusion matrix for laughter vs.
non-laughter as shown in Table ??.
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Table 13 Accuracy and Recall of the 10-fold cross validation results using SVM for the audio,
video, and audio-video modalities.

Modality Accuracy Recall

Audio 78.8% 77.14%
Video 81.1% 81.85%

Audio + Video 86.17% 85.48%

The accuracy is 86.2% which this is significantly higher than using the features
from either modality alone. The recall rate for the non-laughter class is significantly
higher than either of the two modalities but the one for laughter is slightly lower than
that of visual modality alone. Nonetheless, these results are indicative that the use
of multi-modal information would definitely enhance the classification over using
either of the modalities alone.

The best results were obtained using 40 hidden units for the speech RBM, 10
hidden units for the visual features RBM, and finally 25 hidden units for the top
most RBM which uses the outputs of the speech and visual RBMs. The outputs of
the RBMs are then fed as features to an SVM classifier. The results are shown in
Table ??.

Table 14 Accuracy and Recall of the 10-fold cross validation results using RBMs and SVM
classifier for the audio, video, and audio-video modalities.

Modality Accuracy Recall

Audio 83.41% 81.88%
Video 80.18% 9.96%

Audio + Video 88.94% 87.62%

With the use of the RBM architecture, the accuracy of the system is 88.94% and
the recall rate for non-laughter, 92.14%, is better than that of the previous method-
ology.

The research has focused on using multi-modal information for the detection
of laughter in children’s speech while interacting with their caregivers in a semi-
structured environment. The integration of visual features using the OMRON Okao
smile tracking system has the ability to capture the smile characteristics in chil-
dren’s laughter. The audio and the vision modalities on their own are capable of
discriminating between laughter from non-laughter events but when the features are
combined, there is an improvement in the classification accuracy. The use of the
multi-modal architecture using a restricted Boltzmann machine yields in a signif-
icant improvement in the accuracy over using an RBM for features of only one
modality.
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