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Abstract

This paper presents a framework to automatically es-
timate the gaze direction of an infant in an infant-parent
face-to-face interaction. Commercial devices are some-
times used to produce automated measurement of the sub-
jects’ gaze direction. This approach is intrusive, requir-
ing cooperation from the participants, and cannot be em-
ployed in interactive face-to-face communication scenarios
between a parent and their infant. Alternately, the infant
gazes that are at and away from the parent’s face may be
manually coded from captured videos by a human expert.
However, this approach is labor intensive. A preferred al-
ternative would be to automatically estimate the gaze direc-
tion of participants from captured videos. The realization of
a such a system will help psychological scientists to readily
study and understand the early attention of infants. One of
the problems in eye region image analysis is the large di-
mensionality of the visual data. We address this problem by
employing the spectral regression technique to project high
dimensionality eye region images into a low dimensional
sub-space. Represented eye region images in the low di-
mensional sub-space are utilized to train a Support Vector
Machine (SVM) classifier to predict the gaze direction (i.e.,
either looking at parent’s face or looking away from par-
ent’s face). The analysis of more than 39,000 video frames
of naturalistic gaze shifts of multiple infants demonstrates
significant agreement between a human coder and our ap-
proach. These results indicate that the proposed system pro-
vides an efficient approach to automating the estimation of
gaze direction of naturalistic gaze shifts.

1. Introduction

Human face-to-face communication plays an important
role in behavioral science and developmental psychology
[24]. Gaze direction is an important visual channel used
by humans in face-to-face communication [10, 27]. Most
of the time, an eye tracker device is utilized for estima-
tion of the gaze direction. Some of the eye trackers rely
on intrusive techniques such as measuring the reflection of
light, (e.g., infra red) that is shone onto the eye. Reflected
light is sensed by a video camera or other optical sensors
and analyzed to find the eye rotation [9, 10]. In other types
of eye trackers, the corneal reflection called Purkinje im-
age and the center of the pupil are typically used as fea-
tures to track the gaze direction over time. There are also
other techniques based on the electrical potentials (Electro-
Oculogram, EOG) measured with contact electrodes placed
near the eyes [9]. All of these techniques are intrusive and
require a controlled condition to function properly. In a live
face-to-face communication, utilizing intrusive techniques
is not feasible. Capturing videos from participants during a
dyadic interaction is more popular and comfortable. There-
fore, developing non-intrusive techniques that directly mea-
sure the gaze direction from visual data becomes essential.

Eye tracking from visual data has attracted the interests
of many researchers. Several computer vision approaches
have been developed for tracking eyes from images [27].
These approaches can be classified into two categories: 1)
model-based approaches and 2) holistic-based approaches
[9, 27]. In the first category, usually, a geometrical model
for the eye (i.e., the iris contour, the eyeball, and the pupil)
is proposed. Then, the geometrical model is used to inter-
pret the gaze direction in a given eye image. For exam-
ple, Daugman [14, 16] developed a simple algorithm that
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performs a coarse-to-fine search for a circular contour in
the image corresponding to the limbus, and then searches
for the pupil. Similarly, the authors of [3] presented an
approach called “one-circle” algorithm for measuring the
eye gaze using a monocular image that zooms only on one
eye. The geometric-based techniques require calibration
and high resolution images of the eye such that the iris con-
tour and pupil are visible.

In the second category, instead of modeling the geome-
try of the eye, the entire eye image is used to measure the
gaze direction. These approaches are similar to appearance-
based object detection and recognition methods. For exam-
ple, in [15] the eye images are used as inputs to a neural
network. The neural network is trained by requiring the
user to look at a given point on a computer monitor and
subsequently capturing an image of the eye as it looks at
the given point. Similar methods are reported by Kar-Han
et al. in [15]. They presented an appearance-based method
for estimating eye gaze direction by employing an appear-
ance manifold. Their approach is capable of estimating gaze
with accuracy comparable to that obtained by commercial
devices. Appearance-based approaches have the advantage
of being easy to implement and do not require calibration
for every subject.

Some of the gaze estimation studies assume that a very
strong correlation exists between the gaze direction, defin-
ing people’s visual focus of attention (VFOA), and their
head pose. Motivated by this assumption, research has been
conducted to use computer vision techniques to estimate
VFOA from head pose in the case where gaze direction can-
not be estimated directly from the eyes [1, 20, 21]. Ba et
al. [1] recently proposed a model for recognizing the visual
focus of attention (VFOA) of seated people from their head
pose and contextual activity cues. Their model comprises
the VFOA of a meeting participant as the hidden state, and
his head pose as the observation. To account for the pres-
ence of moving visual targets due to the dynamic nature of
the meeting, the locations of the visual targets were used as
input variables to the head pose observation model. Con-
textual information is introduced in the VFOA dynamics
through a slide activity variable and speaking or visual ac-
tivity variables that relate peoples focus to the meeting ac-
tivity context. They used five hours of videos to evaluate
their approach. Their results show that the propose model
is effective in VFOA estimation.

The focus of this paper is to develop a holistic-based
framework to estimate gaze direction. The gaze direction
of an infant in a face-to-face interaction is classified as ei-
ther 1) looking at the parent’s face or 2) looking away from
the parent’s face. In our approach, we track facial im-
ages in captured videos using an Active Appearance Model
(AAM). The AAM consists of a shape component and an
appearance component that jointly represent the shape and

texture variability seen in the object. We utilize the shape
component to register (warp) the facial images to a mean
facial image. The resulting facial image is a shape- and
pose-normalized facial image. We then segment the eye
region (eye patch) from the normalized facial image. The
eye patch is obtained by cropping the facial image utilizing
the mesh nodes that surround the eye region as a bound-
ary. We make use of the appearance component of the eye
patch as our representation for estimating gaze direction.
Although, the appearance component is a useful representa-
tion for estimating gaze direction, it possesses an extremely
large dimensionality. For instance, an eye patch with a size
of 30×100 pixels has a dimensionality of 3,000 in the image
space. Despite the huge dimensionality of the visual data,
events such as gaze shifting have low dimensions embed-
ded in a large dimensional space. Traditional techniques
such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis have limited ability of reducing the
dimensionality of complex nonlinear gaze shift data. Re-
cently, several nonlinear data reduction techniques such as
Isomap [23], Locally Linear Embedding [22], and Lapla-
cian Eigenmap [19] have been presented for dimensional-
ity reduction. Laplacian Eigenmap and its variants such
as Laplacianface [12] and Orthogonal Locally Linear Em-
bedding [6] have shown promising results in face recogni-
tion [12] and age estimation [11] from facial images. We
are inspired by [7] and adopt the spectral regression tech-
nique to learn projection functions that map AAM repre-
sentations into a sub-space termed the gaze direction sub-
space. Reduced feature points presented in the sub-space
are employed to estimate gaze direction based on a Support
Vector Machine (SVM) classifier.

The remainder of this paper is organized as follows. An
eye region representation based on the Active Appearance
Model is introduced in Section 2. Section 3 describes our
approach to data dimensionality reduction. Section 4 re-
views the Support Vector Machine classifier employed for
estimating gaze direction. Section 5 shows the experimen-
tal results and conclusions. Lastly, future work is discussed
in Section 6.

2. Eye Region Representation: Active Appear-
ance Model

Determining an adequate eye image representation for
effectively estimating gaze direction is a challenging prob-
lem. One of the challenges encountered is to track the eye
region across each frame of a video sequence. AAM is a
proven method for tracking facial features reliably over a
series of video frames [8,18]. In this section, we review the
AAM and describe the AAM-based eye region representa-
tion exploited in this work.

AAM is a statistical representation of an object (e.g.,



face) introduced by Cootes et al. [8] and improved by oth-
ers [18] over the past few years. AAM consists of a shape
component, s, and an appearance component, g, that jointly
represent the shape and texture variability seen in the object.
The shape component represents a target structure by a pa-
rameterized statistical shape model obtained from training.
The shape model is defined by a linear model:

s = s0 +
m∑

i=1

p
(s)
i si (1)

where s0 is the mean shape vector, si is a set of orthogonal
modes (i.e., eigenvectors) of shape variation calculated by
applying the PCA method to the covariance matrix of the
training shape data, and p(s) = [p(s)

1 , ..., p
(s)
m ]T is a vec-

tor of shape parameters. The appearance statistical model
is built by warping each image instance so that its control
points (mesh nodes) match the mean shape using the thin-
plate spline algorithm [5]. Then, the intensity variation is
sampled from the shape-normalized image over the region
covered by the mean shape. Similarly, by applying PCA to
the appearance data a linear model is defined:

g = g0 +
m∑

i=1

p
(g)
i gi (2)

where g0 is the mean shape-normalized grey-level vector, gi

is a set of orthogonal modes (i.g., eigenvectors) of intensity
variation and p(g) = [p(g)

1 , ..., p
(g)
m ]T is a set of grey-level

parameters. This generates shape data on facial landmarks
and appearance data on the gray-level intensity of each pixel
in the face model.

(a) (b) (c) (d)

Figure 1. Eye patch appearance model: (a) A sample facial image
along with the AAM component, (b) normalized-appearance face
image, (c) eye region contained within the facial image, and (d)
normalized-appearance eye patch

The shape-normalized appearance component contained
within the eye region (eye patch), geyes ∈ g, in vector-
ized form is utilized as a representation to estimate gaze
direction. The eye patch is obtained by cropping the fa-
cial image utilizing the mesh nodes that surround the eye
region as a boundary. The segmentation boundary is con-
structed by linking the mesh nodes that lie along the eye-
brows with the line formed by the nodes at the temples. Fig-
ure 1 illustrates a sample facial image decomposed into the
normalized-appearance eye patch. Due to the intra-subject
variations in facial appearance, we normalize each feature

vector by subtracting from a neutral feature vector obtained
from the subject: Xnormalized = Xgaze − Xneutral. The
neutral feature vector corresponds to the subject’s facial im-
age consisting of a frontal gaze direction. The Xnormalized

feature vector, which is known as a delta feature, represents
the displacement in facial appearance and decreases the bi-
asing effect of intra-subject variation on gaze direction es-
timation. This representation is employed to estimate gaze
direction. However, due to the curse of dimensionality of
delta features (i.e., 3,000 dimensions, corresponding to an
eye patch of 30 × 100 pixels), the classification of gaze di-
rection is difficult. Therefore, reducing the dimensionality
of the visual data becomes vital and is addressed in the fol-
lowing section.

3. Gaze Direction Sub-Space Learning

The problem of dimensionality reduction arises in the
areas of computer vision, artificial intelligence and data
mining. Traditionally, linear techniques such as PCA and
LDA are utilized to project a feature vector from a high di-
mensional space, RN , into a low dimensional space, Rn

(n << N ) [25]. Linear techniques have limited ability to
represent complex nonlinear data such as gaze shifts in a
low dimensional sub-space. Recently developed nonlinear
dimensionality reduction techniques such as Isomap [23],
Laplacian Eigenmap [19], and Locally Linear Embedding
[22] have shown success in reducing the dimensionality of
complex data. These techniques are also known as mani-
fold learning methods since they assume that the original
feature data lies on a low dimensional manifold embedded
in a high dimensional space. These techniques are compu-
tationally efficient and have locality-preserving properties.

Laplacian Eigenmap and its variants (e.g., Orthogonal
Locally Linear Embedding [6]) have been successfully used
in face identification [12] and face aging recognition [11].
In this paper, we employ the Laplacian Eigenmap followed
by the spectral regression technique [7] to eye patches (i.e.,
the vectorized appearance feature) into a gaze direction sub-
space by learning a projection matrix. For the remainder of
this section, we review the regularized locality preserving
indexing (LPI) technique [7] via spectral regression.

Recently, Cai et al. [7] presented the regularized local-
ity preservation algorithm which has demonstrated success
in representing large dimensional data in a low dimensional
sub-space. Similarly to LPI, the regularized locality pre-
serving algorithm aims to find the mapping function a that
maps a set of points X = [x1, x2, ..., xk] represented in a
high dimensional space, to points Y = [y1, y2, ..., yk] in a
low dimensional sub-space (yi = aT xi). This approach is
computationally efficient and is described as follows:



1. Find Y by solving the following optimization problem:

Y = arg min
Y DY T =1

k∑

i=1

k∑

j=1

(yi − yj)2Wij

= arg min
Y DY T =1

Y LY T (3)

where similarity matrix W is constructed by finding
the k nearest neighbor points using the Euclidean norm
in RN and weights are assigned as follows: Wij =
1 if two points xi and xj are neighbors and Wij =
0, otherwise. Alternatively, weights can be assigned

by using the heat kernel, Wij = exp− ||xi−xj ||2
t [19].

The weight assignment can also be supervised if we
know the class that these points belong to. Therefore,
if two points belong to different classes, the assigned
weight is zero, otherwise the weight is calculated as
described above. In this paper, the supervised method
is used to calculate W . D is a diagonal matrix whose
elements are column sums of W (Dii =

∑
j Wij ) and

L = D − W is the Laplacian graph. The constraint
aT XDXT a = 1 effectively fixes the scaling factor of
the solution.

The optimization problem 3, which is also known as
Laplacian Eigenmap [19], can be solved efficiently by
calculating the eigenvectors of the generalized eigen-
problem LY = λDY .

2. Find a such that Y = aT X by solving a regularized
least squares problem:

a = argmin
a

{
k∑

i=1

(aT xi − yi)2 + α||a||2} (4)

The regularization term guarantees that the least
squares problem is well-posed and has a unique so-
lution.

This technique is called spectral regression since it per-
forms spectral analysis on the Laplacian graph [4] followed
by least squares regression. We use this approach to learn a
projection matrix, a, to represent each eye patch in a low di-
mensional gaze direction sub-space. We have successfully
used this technique in measuring the intensity of facial ex-
pressions (i.e. Action Units 6 and 12 described by the Facial
Action Coding System) [17].

4. Gaze Direction Classification

After the projection of the Xnormalized features into the
gaze direction sub-space, the features are utilized to classify
the gaze direction as either looking at the parent’s face or
away from the parent’s face. This is a binary (two-class)

classification problem and we employ an SVM classifier to
solve this problem.

SVMs have been successfully used in the field of ma-
chine learning and pattern recognition. A linear binary
SVM classifier is determined by two parallel hyper-planes
separating the margin between two classes. We refer our
reader to [26] for technical details on SVM classification.

Kernel functions are usually employed to efficiently map
input data, which may not be linearly separable, to a fea-
ture space where linear methods can then be applied. Based
on the kernel mapping approach, every inner product is re-
placed by a nonlinear kernel function K(x, y) = φ(x).φ(y)
where x and y are two input data sets. There are different
types of kernel mappings such as the polynomial kernel and
the Radial Basis Function (RBF) kernel. SVMs using ker-
nel functions demonstrate good classification accuracy even
when only a modest amount of training data is available,
making them particularly suitable for a dynamic, interactive
approach to gaze estimation. Our experiments indicate that
the RBF kernel has the highest performance in classifying
gaze direction.

5. Experiments and Results

Studying the gaze shift patterns of an infant in an early
face-to-face communication is a topic of interest in develop-
mental psychology. The framework developed in this paper
was applied to automatically classify the gaze direction of
infants from a single camera that only captures infant’s face.
We classify the infant’s gaze direction as either looking to-
wards the parent’s face or away from the parent’s face.

This study included a subset (eight subjects) of a large
infantparent dyads face-to-face study [13]. Infants partici-
pated in this study were six-month-old. The dyadic interac-
tion was videotaped with a camera directed at the infant’s
face (used for automatic gaze measurement), a camera di-
rected at the parent’s face, and a camera that captured both
infant and parent interacting (used as ground truth for gaze
coding). Videos were recorded simultaneously at 30 fps us-
ing the three cameras. Infants are placed in an infant seat
bolted to a table so that the infant is at the eye level of the
mother who is seated in a position in front of the infant.
The procedure is a three minute naturalistic face-to-face in-
teraction (’play as you normally would at home’) in which
mothers are free to move their faces as they will, but typi-
cally move their faces toward and away, and up and down
with respect to the infant’s face.

The videos captured from the infant’s camera were used
in this paper for automatic gaze measurement. All of the
captured frames of infants’ videos were used in our exper-
iment except for those where the face was occluded by the
infant’s hand or foot or where the eyes of the infant were not
visible due to severe head pose. More than 39,000 frames
were used in our experiments.



An expert coder manually coded the gaze direction (i.e.,
looking at the parent’s face or looking away from the par-
ent’s face) occurring in each video frame acquired from the
camera that captured both infant and parent interacting. The
manual coding is then employed for both the training and
testing of our system.

The infant’s facial videos were tracked and modeled us-
ing the AAM algorithm provided by [18], and the delta fea-
tures were extracted for every video frame of all eight in-
fants. The Xnormalized features of every 15th frame were
used to learn the projection matrix a based on spectral re-
gression for constructing the gaze direction sub-space. W
in Eq. 3 was calculated using the supervised method in this
paper. The dimension of the gaze sub-space is 28 which
corresponds to the smallest eigenvalues construct matrix Y
in Eq. 3.

Our experiments are based on Leave-One-Subject-Out
cross validation to predict the gaze direction. SVM train-
ing was performed on every mth, m = 5, 7, 10, 20, 25, 30,
and 50, video frame of seven subjects excluding one sub-
ject. Testing was performed on the left out subject. This
scenario was repeated for all other subjects.

In order to compare the predicted and manually coded
gaze directions, we calculate the Cohen’s kappa coefficient
[2], which is a statistical measure of inter-rater agreement
and is defined as:

κ =
Pr(o) − Pr(e)

1 − Pr(e)
(5)

where Pr(o) is the probability of observed agreement and
Pr(e) is the probability of random agreement. κ ranges
between 0 and 1. Cohen’s kappa is known to be more ro-
bust than simple percentage agreement since it takes into ac-
count the chance of random agreement. As a rule of thumb,
κ between .4 and .6 is regarded as fair agreement, between
.6 to .75 as good agreement and above as excellent agree-
ment [2].

Table 1 illustrates both the κ coefficient and the percent-
age agreement between the actual and predicted gaze di-
rections using the SVM classifiers that were calculated for
eight infants under study (the results of this table is based
on m = 5). This table demonstrates that our approach has
good performance in classifying the gaze direction. The
average κ coefficient and percentage agreement between
our technique and a human coder are .79 and 91%, respec-
tively. The average κ coefficient and percentage agreement
between two human coders are .75 and 90%, respectively.

A human coder has also coded the gaze direction using
only the videos captured from the infant’s camera (the same
videos that were used by our automated system). The aver-
age κ coefficient and percentage agreement between the hu-
man coder and the automated system using infants’ videos
in coding the gaze direction were .61 and 84.23%, respec-
tively (this result is only based on the available codes for

Sub.
Cohen’s Percentage
Kappa Agreement(%)

1 .68 82.3
2 .90 95.0
3 .63 88.0
4 .78 91.5
5 .89 95.9
6 .54 87.7
7 .68 84.0
8 .92 96.5

Average .79 91
Table 1. Cohen’s Kappa coefficient between the actual and pre-
dicted gaze direction data calculated for the eight subjects; Per-
centage agreement is also presented in this table. 20% of the data
(m = 5) was used to train the SVM classifier.

seven subjects excluding subject one). Obviously, this re-
sult shows that our automated system outperforms a human
in coding the gaze direction from the infants’ video.

To justify the use of the nonlinear data reduction tech-
nique employed in this work (spectral regression), we com-
pare its performance to the traditional linear data reduction
technique, PCA. The κ coefficient and percentage agree-
ment (m = 5) achieved by substituting the data reduction
component of our system with PCA were .55 and 80%, re-
spectively. Clearly, the PCA method is outperformed by the
spectral regression technique, which yielded a Kappa and
percentage agreement of .79 and 91%, respectively.

Figure 2 shows the effect that the number of training
frames has on the accuracy of the system when classifying
the gaze direction. As the figure illustrates, even by using a
small training set (2% of the frames, m = 50), the system
demonstrates a high agreement with the human coder (the
average k coefficient and percentage agreement are .77 and
90%, respectively).

6. Conclusions and Future work

In this paper, we presented a framework for estimating
the gaze direction of naturalistic gaze shifts in eye patches.
We utilized the concept of Regularized Locality Preserva-
tion via spectral regression to reduce the dimensionality
of the eye patches modeled by the AAM. Our approach
was employed to estimate the gaze direction of infants in a
live face-to-face communication. The statistical agreement
(i.e., the Cohen’s kappa coefficient and percentage agree-
ment) between a human coder and our system in estimating
the gaze direction of naturalistic gaze shifts is significantly
high.
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