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Abstract 

 

Early interaction is a dynamic, emotional process in which infants influence and are influenced 

by caregivers and peers. This chapter reviews new developments in behavior imaging—objective 

quantification of human action—and computational approaches to the study of early emotional 

interaction and development. Advances in the automated measurement and modeling of human 

emotional behavior—including objective measurement of facial expressions, machine learning 

approaches to detecting interaction and emotion, and electrophysiological measurements of 

emotional signals—provide new insights into how interaction occurs. Furthermore, advances in 

automated measurement and modeling can be applied to the study of atypical development, 

contributing to our understanding of, for example, social affective behaviors in toddlers with 

autism spectrum disorder (ASD). We conclude by posing questions for future directions of the 

field of computational approaches to emotion. 
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Introduction 

Early interaction between infants, parents and other caregivers is an emotional process 

replete with bouts of both laughter and distress. These emotional expressions often develop in 

the context of intricate social interactions that may be the basis of patterns of emotional 

engagement throughout the lifespan (Messinger, Ruvolo, Ekas, & Fogel, 2010). However, our 

understanding of emotional expression has been hampered because human coding of emotional 

expression is time-intensive (Cohn & Kanade, 2007). A consequence of this measurement 

bottleneck is that more is known about infants’ perception of emotional expressions than of their 

actual production of these expressions (Mitsven, Messinger, Moffitt, & Ahn, in press). To 

surmount these difficulties, this chapter reviews computational approaches to the measurement 

and modeling of emotional expression and interaction. Modeling here refers both to advanced 

inferential (statistical) methods, machine learning approaches, and their increasingly common 

hybrids. Finally, we review recent work applying automated measurement of 

electrophysiological and behavioral indices of emotion to the characterization of autism 

spectrum disorder (ASD). 

Automated measurement of emotional expression and interaction 

Advances in machine learning (in which software learns to represent and classify video 

or audio signals) offer the possibility of automated measurement of facial expressions, emotional 

vocalizations, and other expressive actions. Here, we review three primary approaches to 

automated measurement of emotion. In the first approach, objective measures of low-level 

behavior features including the movement of facial landmarks and the proximity of infant and 

parent serve as direct indices of emotional functioning. In the second, unsupervised algorithms 

detect emotional signals directly from audio or video data. Here, the software detects and 
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represents the phenomena of interest—and the human investigator interprets the results. The 

third and most common approach involves using algorithms to replicate human coding.  

Low-level tracking methods  

Tracking of emotional facial expressions. One approach to measuring emotional expressions, 

such as facial expressions, involves automated tracking of the movement of facial landmarks and 

head position in three-dimensional space from video (Jeni, Cohn, & Kanade, 2017). In an 

illustrative project, 13-month-olds were exposed to a positive (bubbles) and a negative (toy 

removal) emotion-eliciting task. Facial features exhibited greater displacement, velocity, and 

acceleration in response to the negative than the positive task, and infant head position showed 

the same pattern (Hammal et al., 2019). Together, the movement of facial features and head 

movement accounted for one third of the variance in manual behavioral affect ratings within 

each of the two conditions (Hammal, Cohn, Heike, & Speltz, 2015). Manual coding confirmed 

higher levels of smiles during positive tasks and higher levels of cry-faces (which encompass 

distress and anger expressions) during negative tasks (Hammal et al., 2018). The results suggest 

that low-level tracking of facial and head movement can distinguish negative (cry-face) versus 

positive (smiling) expressions.  

Tracking movement and orientation. Low-level physical features of interaction have also been 

used to predict expert measurements of psychological constructs such as synchrony and mutual 

engagement. Leclère and colleagues (2016) combined 2D and 3D sensor data from 10 high-risk 

(referred for neglect) and 10 low-risk 1- to 3-year-olds and their mothers to examine mother-

infant interactions during a pretend tea party. Kinect depth and video tracking indicated that 

higher levels of mother motion were associated with lower expert ratings of maternal sensitivity 

and intrusiveness, and higher ratings of infant avoidance. In addition, pauses in infant and parent 
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joint movement were associated with higher ratings of maternal sensitivity and higher levels of 

infant engagement. The findings suggest that relatively low-level physical features such as 

mother-infant proximity and activity level are promising markers of caregiver sensitivity and 

intrusiveness and infant engagement, key indices of socioemotional development. 

Unsupervised machine learning 

A more radical approach to automated measurement involves direct unsupervised machine 

learning of emotional interaction from video or audio. Rehg and colleagues, for example, directly 

detected parent-child playful interaction characterized by quasi-periodic spatiotemporal patterns 

from posted YouTube videos (Prabhakar, Oh, Wang, Abowd, & Rehg, 2010). Likewise, Chu and 

colleagues (2017) automatically detected affective synchrony in videos of parents and infants 

engaged in face-to-face interaction. Using shape features of infant and mother faces, an 

unsupervised algorithm detected a priori areas of common action in overlapping segments of 

video that corresponded to infant and mother smile displays (see Figure 1). This is a bottom-up 

validation of the importance of positive emotion communication in early interaction. These 

approaches suggest the as yet unrealized potential of unsupervised machine learning to identify 

new patterns of early emotional interaction. 

[Insert Messinger-Fig 1 here] 

Computational approaches to replicate human coding 

The most common approach to objective measurement is supervised training to replicate human 

expert measurements. One target is replication of the Facial Action Coding System (FACS; 

Ekman & Friesen, 1992; Ekman, Friesen, & Hager, 2002)—applied to infants in BabyFACS 

(Oster, 2006)—an expert system for documenting anatomically based appearance changes based 

on facial Action Units (Lucey, Ashraf, & Cohn, 2007; Mahoor et al., 2008). We previously 
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instantiated automated measurement of the presence and intensity of Action Units by using 

nonlinear manifold learning (Belkin & Niyogi, 2003) of data by combining active appearance 

and shape models to train support vector machines (SVMs; Messinger, Mattson, Mahoor, & 

Cohn, 2012). This approach yielded insights into similarities between early positive and negative 

emotion expression, the structure of interactive positive affect, and early interaction dynamics.  

Positive and negative expression similarities. Just as smiles are often used to index infant 

positive emotion, the cry-face is the preeminent infant expression of negative emotion. 

Importantly, both smiles and cry-face expressions can involve different degrees of mouth 

opening and Duchenne activation—eye constriction produced by the muscle orbiting the eyes. 

The Duchenne intensification hypothesis holds that Duchenne activation and mouth opening 

index the intensity of both smile and cry-face expressions (Bolzani-Dinehart et al., 2005; 

Darwin, 1872/1998). In support, both mouth opening and the Duchenne marker indexed greater 

perceived positive valence in smile expressions and greater perceived negative valence of cry-

face expressions. Next, the intensification hypothesis was tested using the Face-to-Face/Still-

Face (FFSF) protocol (Mattson, Cohn, Mahoor, Gangi, & Messinger, 2013, but see Mattson, 

Ekas, et al., 2013). In the FFSF, a naturalistic face-to-face interaction is interrupted when the 

parent is asked hold a still-face and not engage with the infant, and ends when the parent is asked 

to play again with the infant (Adamson & Frick, 2003; Tronick, Als, Adamson, Wise, & 

Brazelton, 1978). During face-to-face play, which is expected to elicit positive emotion, smiles 

were more likely to involve eye constriction than during the still-face, which elicits negative 

emotion (see Figure 2). As predicted, the proportion of cry-faces involving eye constriction 

during the negative emotion eliciting still-face was higher than during face-to-face play 

(Messinger et al., 2012). The results suggest that automated measurement of facial Action Units 
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such as eye constriction can produce insights into the structure of infant positive and negative 

emotion expression. 

 [Insert Messinger-Fig 2 here] 

Interactive positive affect. Use of the active appearance models described above (Mattson et 

al., 2013) to measure the Action Units involved in infant and parent smiling produced insights 

into the expression of positive emotion and the dynamic structure of early interaction. Some 

propose that only adult Duchenne smiling expresses positive emotion, whereas smiles without 

the Duchenne marker do not (Ekman & Friesen, 1982), although they do have other important 

social funcitons (see Mireault, chapter XXXchapter MIREAULT, this volume). Objective 

measurement of the intensity of smiling and eye constriction in the face-to-face interactions of 

two dyads indicated that Duchenne smiling was not a discrete entity but a continuous signal 

(Messinger, Mahoor, Chow, & Cohn, 2009). Specifically, the intensity of smiling and eye 

constriction were highly correlated in both mothers and infants. In sum, neither infants nor 

mothers appeared to exhibit discrete Duchenne and non-Duchenne smiles during interaction 

(Messinger, Cassel, Acosta, Ambadar, & Cohn, 2008). Instead, all features of smiling covaried 

together, suggesting they indexed a continuum of positive emotion.  

Interaction dynamics. Messinger et al. (2009) went on to describe early caregiver-infant 

interaction using a continuous measure of Duchenne smiling intensity derived from objective 

measurement of facial Action Unit intensity. This dynamic portrait of positive emotion 

uncovered variability in interactive synchrony at multiple temporal levels (see Figure 3). In 

Figure 3, changes in the zero-order correlation of infant and mother Duchenne smiling intensity 

illustrate variability in emotional synchrony over time. These changes suggest disruptions and 

repairs of emotional synchrony (Schore, 1994; Tronick & Cohn, 1989). Findings of dynamic 
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changes in emotional synchrony are intriguing because a large body of research suggests that the 

degree to which parents adjust their own affective expressions to match those of their infants is 

associated with subsequent self-control, the internalization of social norms, and attachment 

security (Beebe et al., 2010; Kochanska, Forman, Aksan, & Dunbar, 2005; and see chapter 

HALBERSTADT, this volume).  

[Insert Messinger-Fig 3 here] 

Coding vocal expressions. In the audio domain, the use of physical characteristics to index 

emotional components of vocal expression is common. Bourvis and colleagues (2018) employed 

automated measures of infant and mother vocalization during the FFSF. These were 

supplemented with detection of an emotional component of mothers’ speech, infant directed 

speech (e-IDS), indexed by higher pitch and wider pitch range. Infants increased their rate of 

vocalizing between the face-to-face and reunion episode of the FFSF but mothers exhibited few 

changes in vocalization parameters. In the reunion episode, likewise, infants increased their rate 

of response to mothers’ e-IDS, rates of overlapping speech increased, and pauses in dyadic 

speech decreased. The results illustrate the potential of objective measures of the dyadic speech 

stream to disentangle patterns of emotional interaction following the still-face perturbation, a 

standard assessment of socioemotional functioning.  

Coding attachment. Attachment security is central to early social and emotional development, 

and indexes an infant’s ability to be comforted by a caregiver when distressed. Attachment 

security is typically assessed in the Strange Situation Procedure (SSP), which involves two brief 

separations from and reunions with the parent. However, attachment assessment is 

conventionally assessed using expert subjective ratings. Using relatively low-level, Kinect-based 

depth-video measurements of position and LENA-derived estimates of infant crying, Prince et al. 
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(2015) explored objectively measured attachment behavior in the reunion episodes of the SSP. 

Objective measurements of the frequency with which the infant made contact with the mother, 

the duration of that contact, the duration of infant crying and the inverse of the velocity of the 

infant’s initial approach to the mother accounted for a substantial proportion of the variance in, 

respectively, expert ratings of proximity-seeking (approaching mother), contact-maintenance 

(staying close to mother), resistance (to contact with mother), and avoidance (ignoring or moving 

away from mother). These results suggest that measurement of physical proxemics and crying 

can provide insight into patterns of attachment previously captured exclusively via expert but 

subjective rating scales. 

 Chow and colleagues (2018) modeled “qualitative” changes in movement dynamics 

during the reunion episodes of the SSP by incorporating regime switching into a system of 

differential equations. Seeking a computational foundation for attachment theory, the researchers 

distinguished a proximity-seeking regime, in which infants tended to approach the parent, and an 

exploration regime, in which infants moved away from the parent to explore the room. As the 

infant attachment system became more activated in the second reunion, there was an increase in 

transitions to the proximity-seeking regime. These transitions were heightened in the presence of 

infant vocalizations (often cries), which functioned as signals of the infant’s attachment needs. 

These results speak to an emerging capacity of researchers to computationally capture 

objectively measured infant- and dyad-specific emotional dynamics on a moment-to-moment 

basis to illuminate long-standing theories of early social motivation. 

Modeling approaches to emotional expression and interaction 

Computational approaches to the study of early emotion involve more than the use of machine 

learning algorithms to detect and measure expressive signals. Researchers are using increasingly 
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sophisticated models to characterize when and why emotional signals are used during 

interaction, and to describe the development of those emotional interactions (for an advanced 

approach, see chapter XXX: Rudrauf et al.RUDRAUF, this volume).  Here we review research 

on the development of dyadic responses to infant distress, modeling of the predictability of 

smiling interactions, and the application of a novel framework for inferring infant goals during 

emotion-laden interactions. 

Modeling face-to-face interactions 

Chow et al. (2010) applied computational and statistical modeling approaches to 

understanding changes in infant and parent affective valence as they unfold in the FFSF. 

Specifically, a bivariate autoregressive model indicated the presence of both infant-to-parent and 

parent-to-infant interactive influence. Although each partner was responsive to the other, parents 

were more responsive to their infants than infants were to their parents. A stochastic regression 

approach applied within a multi-dyad time-series revealed changes in interactive influence over 

time that were accentuated in the reunion episode following the still-face. The results point to the 

importance of quantifying change over time to characterize how dyads respond to one another 

emotionally (Chow et al., 2014).  

The goals of face-to-face interactions. Recently, our team used inverse optimal 

reinforcement modeling to infer likely infant and mother goals during their interactions (Ruvolo, 

Messinger, & Movellan, 2015). Probable consequences of beginning and ending smiles on the 

durations of subsequent dyadic states such as mutual smiling were used to infer goals. Results of 

this modeling approach suggest that mothers’ likely goal is to increase the duration of mutual 

smiling (see Figure 4). However, infants’ likely goal is to increase the duration of epochs when 

mother is smiling but the infant is not. To achieve this goal, infants briefly smile until the mother 
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smiles, and then they end their own smile. These results are surprising as they suggest infants do 

not act to increase the time they express positive emotion. Instead, infants smile as part of a 

dyadic process in which they create and then disengage from moments of mutual positive 

emotion expression (Stifter & Moyer, 1991).  

[Insert Messinger-Fig 4 here] 

Development changes in face-to-face interactions. We examined the predictability of 

infants initiating or ending a smile within particular face-to-face interactive contexts observed 

weekly from 1 to 6 months of age (Messinger, Ruvolo, Ekas, & Fogel, 2010). The mean, 

variance, and overall distribution of mutual smiling states became more similar over consecutive 

weekly sessions with age, such that individual dyads’ states of mutual positive affect became 

more predictable—to each partner, as well as to an outside observer—with development. Infants 

and mothers also increased the number of alternating turns in turn-taking interactions involving 

initiating and terminating smiles, suggesting that infants and mothers became more emotionally 

responsive to one another with age (Messinger et al., 2010). These findings suggest that repeated 

infant-parent interactions produce stable dyadic differences in emotional expressivity. 

Developmental consequences of face-to-face interactions. Ekas, Haltigan, and Messinger 

(2013) examined continuous trends in manually coded infant expressivity over the course of the 

still-face using multilevel models (see Figure 5). Group effects indicated logarithmic decreases 

in infant gazing at the parent and smiling and increases in infant cry-face expressions. At the 

level of individual trajectories, infant gaze (but not smiling) trajectories were associated with 

later attachment security in a theoretically meaningful fashion (Ainsworth, Blehar, Waters, & 

Wall, 1978). Infants with later insecure-avoidant attachment exhibited the steepest drop in gazing 

at the parent (disengagement with the attachment figure), infants with later insecure-resistant 
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attachment exhibited the least drop in gazing (they remained engaged with the parent despite 

their unavailability), and securely attached infants exhibited a moderate slope of disengagement. 

The results suggest that dynamic modeling of changes in engagement over time during the 

negative emotion eliciting still-face may be associated with later patterns of socioemotional 

security.  

[Insert Messinger-Fig 5 here] 

Modeling naturally occurring elicitors of emotional interactions 

Researchers have combined computational modeling (e.g., Hidden Markov Models, or HMMs) 

and statistical (e.g., cluster analysis) approaches to understanding infant-mother interaction in 

natural contexts—in this case, dyadic responses to childhood inoculations (Backer, Quigley, & 

Stifter, 2018; Stifter & Rovine, 2015). Studies investigating interactive processes involved in the 

down-regulation of infant distress following immunization have traditionally relied on 

correlational or contingency analyses to understand the effectiveness of maternal soothing 

behaviors on infant distress. However, such approaches are unable to capture the influence of 

multiple simultaneous soothing behaviors that occur in response to infant distress. HMMs 

indicated that infants utilized more complex responses to aversive stimuli and became more 

organized and efficient in their soothing behaviors with age (Stifter & Rovine, 2015). Cluster 

analyses indicated that the fit between infants’ capacity to be soothed (indexed by temperamental 

factors) and appropriate and responsive changes in maternal soothing behaviors over time that 

determined infant soothability. These findings suggest the potential of an integrative approach to 

modeling the reciprocal interplay of emotional communication between parent and child over 

time (Backer et al., 2018). 

Modeling emotional vocalizations 
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Infant cries are a central focus of automated measurement research on emotional components of 

the vocal signal. Infant crying is a universal distress signal that becomes a more heterogenous 

negative emotion expression over the first year (Gustafson & Green, 1991). The commercially 

available Language ENvironment Analysis (LENA) technology employs Gaussian mixture 

models to detect adult speech, infant speech and emotion-laden non-speech vocalizations, which 

tend to be cries and are referred to as such here.  

The temporal and interactive dynamics of crying. In day-long home recordings, Fields-

Olivieri and Cole (2019) found that mothers were less likely to respond to toddlers’ cries than 

toddler’s word-like vocalizations. But when mothers did respond to toddlers’ cries, the toddlers 

were more likely to subsequently produce speech-like vocalizations rather than additional cries 

(Fields-Olivieri & Cole, 2019). With respect to temporal structure, Abney and colleagues (2017) 

found that home-recorded cries in the first year exhibited a higher degree of clustering in time 

(temporal heterogeneity) than speech-like vocalizations. Likewise, among 1- to 2-year-olds in an 

early intervention preschool classroom, we found that vocal expressions of negative affect 

perpetuated themselves in time (the duration of one cry predicted the duration of the next) and 

cries tended to occur in clusters over the day (burstiness; Messinger et al., 2019). Together these 

results highlight the power of objective measurement of cries to shed light on the temporal 

structure of negative affect and the dynamics of early communication using day-long samples of 

naturally occurring behavior.  

Using automated measurement and modeling to understand atypical development  

Researchers have begun using automated measurement, including electrophysiological 

approaches, to measure individual differences in children with autism spectrum disorder (ASD). 

ASD is a pervasive disorder of social communication that impacts both nonverbal and verbal 
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interaction (APA, 2013; see chapter CONNER, this volume). We begin by describing 

electrophysiological measurement of arousal and then review its application to ASD. We then 

review work using machine learning of behavior to index ASD symptoms during diagnostic 

assessments.  

Tracking Arousal. Physiological indices of arousal are a key index of emotional dynamics. 

Electrodermal activity (EDA) measured by skin conductance, for example, can index 

sympathetic nervous system (SNS) arousal, providing a physiologic indicator of children’s 

emotional responses and regulation (Benedek & Kaernbach, 2010; Chow et al., 2010; Rogers & 

Ozonoff, 2005). Measurement of EDA captures the SNS “fight or flight” response and considers 

both the slow-changing levels of arousal (tonic EDA) and immediate responses to the 

environment (phasic EDA; Fowles, 2007). Phasic changes in EDA are the result of fluctuations 

in eccrine sweat function in response to sympathetic activation (Fowles, 2007). EDA is widely 

used as an indicator of emotional arousal (Bouscein, 2012). In neonates, noxious stimuli—

including a heel prick procedure (Harrison et al., 2006) and high sound levels (Salavitabar et al., 

2010)—have been tied to sharp, sustained increases in EDA. By contrast, cessation of nursing is 

associated with a reduction in EDA below baseline levels (Harrison et al., 2006).  

Electrodermal activity in children with ASD. Recent technological developments have 

enabled ambulatory measurement of EDA via wearable wrist sensors approximately the size and 

appearance of a watch (Poh et al., 2012; Poh, Swenson, & Picard, 2010). These ambulatory 

measurements provide a unique understanding of individual differences in response to 

environmental stimuli and interactions. In a sample of children with ASD (4-10 years), the 

concordance of ambulatory measures of parent and child EDA during a free-play period was 

lower in dyads in which the child had higher autism symptoms (Baker et al., 2015). Over 
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developmental time, it is possible that autism-related social impairment interrupts the 

development of synchronous interactions between child and parent. Toddlers with ASD with 

higher restricted and repetitive behavior scores on the Autism Diagnostic Observation Schedule 

or ADOS-2 (Lord et al., 2012), the gold standard, play-based assessment of ASD, have greater 

increases in skin conductance level (SCL) in response to mechanical toys as opposed to passive 

toys (Prince et al., 2017). This lends credence to the idea that children with higher autism 

symptoms are differentially reactive to specific stimuli in the immediate environment in a way 

that may preclude concordance with the parent. In both children with typical development and 

children with ASD, low EDA appears to be a risk factor for externalizing behavior problems in 

the context of harsh or low-quality parenting (Baker et al., 2017; El-Sheikh & Erath, 2011). 

Strikingly, instances of severe physical aggression for inpatient, minimally verbal, school age 

children with ASD can be predicted one minute ahead based on ambulatory monitoring of 

sympathetic (EDA) and parasympathetic (cardiac) arousal (Goodwin et al., 2018). The 

ambulatory measurement of arousal is a promising tool for understanding individual differences 

in how children with and without ASD interface with their social and physical environments. 

Measuring ASD symptoms with machine learning.  During the ADOS-2 assessment of 

ASD, a trained clinical examiner assesses autism symptoms. We were interested in predicting 

ADOS-2 social affect symptoms, which index deficits in the quantity and quality of vocal 

initiations, gesturing, and facial expressions including smiles, as well as unusual eye contact. 

Processing video with the Affdex system (Stockli, Schulte-Mecklenbeck, Borer, & Samson, 

2018), objective measurements of social smiling to the examiner and parent from video were 

inversely associated with ADOS social affect symptoms (Ahn et al., 2019; Moffitt et al., 2019). 

LENA measures of adult-child turn-taking during the ADOS were also moderately associated 
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with social affect symptoms such that higher turn-taking was associated with lower symptom 

levels. We next used deep learning to directly predict social affect symptoms from the ADOS-2 

audio stream (Sadiq et al., 2019). Deep learning algorithms take raw data as input and represent 

features of these data in sequential layers whose output can be a classification (Bishop, 2006; 

LeCun, Bengio, & Hinton, 2015) of audio or video signals (Lavner, Cohen, Ruinskiy, & 

Ijzerman, 2016). We combined neural networks with recurrence and memory features to leverage 

temporal sequencing with a Synthetic Random Forest, a nonlinear algorithm in which the 

sequential interplay of input features that correspond to the branches of virtual trees, predict 

outcomes (Lu, Sadiq, Feaster, & Ishwaran, 2018). This deep learning approach predicted social 

affect severity scores more effectively than the pre-trained LENA algorithm (Sadiq et al., 2019). 

Together, the results highlight the potential of different forms of machine learning to directly 

estimate emotional symptoms in children being assessed for ASD (Hashemi et al., 2017).   

Conclusions 

Infants’ early interaction and emotional expressions set the stage for emotional functioning 

throughout the lifespan. Objective measurement of behavior and computational modeling are 

providing insights into how infants express emotion, and how emotional interactions unfold in 

real time and over development. Applications of these approaches to children with ASD suggest 

the potential utility of objective measurement of the emotional component of autism symptoms, 

and the role of psychophysiological measurements of arousal in understanding individual 

differences in children with ASD. 

Future Directions 

Objective measurement of children’s emotional behavior by means of deep learning is in its 

infancy. The synthesis of multimodal emotional parameters (e.g., facial, vocal, and movement) 
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remains an important goal, as does the integration of these objective measurements with 

psychophysiological indices of constructs such as arousal. Likewise, the ability of automated 

measurement to facilitate studies of children’s emotional functioning over substantial periods of 

time and multiple contexts (e.g., home, preschool, and clinic) remains a goal, as does the 

objective study of children’s emotional interactions with peers as well as parents. Finally, 

computational modeling of emotional interaction is increasing in its ability to understand 

moment-to-moment changes in affective states. However, modeling of objective measurement to 

better understand emotional development remains aspirational.  
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Figures 

 

 

Figure 1. Discovered synchronies in six parent-infant dyads. Strong smiles and mutual attention 

were among the synchronies discovered between parents and their 6-month-old infants. Credit: 

Chu, W.-S., De la Torre, F., Cohn, J. F., & Messinger, D. S. (2017). A branch-and-bound 

framework for unsupervised common event discovery. International journal of computer vision, 

123(3), 372-391. doi:10.1007/s11263-017-0989-7 
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Figure 2. Eye constriction (the Duchenne marker) indexes positive and negative affective 

intensity in the Face-to-Face/Still-Face (FFSF). Smiling during the face-to-face play with the 

parent involved a higher proportion of smiling with eye constriction than smiling during the still-

face. The still-face involved a higher proportion of cry-faces with eye constriction than face-to-

face play. Credit: Mattson, W. I., Cohn, J. F., Mahoor, M. H., Gangi, D. N., & Messinger, D. S. 

(2013). Darwin’s Duchenne: Eye constriction during infant joy and distress. PloS One, 8(11), 

e80161.  
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Figure 3. Automated Interaction. Correlations between infant and mother smiling activity are 

displayed. Above each segment of interaction is a plot of the windowed cross-correlations for 

successive three second segments of interaction. High positive correlations are deep red and high 

negative correlations are deep blue (see color bar at right). The horizontal midline of the plots 

indicates the zero-order correlation; lagged correlations are indicated above and below the 

midline. Credit: Messinger, D. S., Mahoor, M. H., Chow, S.-M., & Cohn, J. F. (2009). 

Automated measurement of facial expression in infant–mother interaction: A pilot study. 

Infancy, 14(3), 285-305. doi:10.1080/15250000902839963 
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Figure 4. Means of the probability distributions of potential mother and infant goals. Error bars 

are 95% confidence intervals of the mean. Credit: Ruvolo, P., Messinger, D., & Movellan, J. 

(2015). Infants time their smiles to make their moms smile. PloS One, 10(9), e0136492. 

doi:10.1371/journal.pone.0136492 

 

 



UNCORRECTED FIRST PROOF 

 

 

Figure 5. Observed and predicted mean frequencies of A) Gazes at parent, B) Smiles, C) 

Positive social bids, and D) Cry-face expressions over time in the still-face episode. Frequencies 

refer to the number of frames per second (maximum 30) in which a particular behavior occurred. 

Social bids were defined as smiles in the presence of gazing at the parent. Predicted refers to the 

expected frequency based on a hierarchical linear model containing an intercept and a linear term 

indexing behavior change proportional to log10 transformation of the number of seconds 

elapsed. Although the model only contains linear terms, the log transformation allows for 

curvilinear change over seconds. Credit: Ekas, N. V., Haltigan, J. D., & Messinger, D. S. (2013). 

The dynamic still-face effect: Do infants decrease bidding over time when parents are not 

responsive? Developmental Psychology, 49(6), 1027-1035. doi:10.1037/a0029330. 
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