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Abstract

This paper presents a framework to automatically mea-
sure the intensity of naturally occurring facial actions. Nat-
uralistic expressions are non-posed spontaneous actions.
The Facial Action Coding System (FACS) is the gold stan-
dard technique for describing facial expressions, which
are parsed as comprehensive, nonoverlapping Action Units
(Aus). AUs have intensities ranging from absent to max-
imal on a six-point metric (i.e., 0 to 5). Despite the ef-
forts in recognizing the presence of non-posed action units,
measuring their intensity has not been studied comprehen-
sively. In this paper, we develop a framework to measure
the intensity of AU12 (Lip Corner Puller) and AU6 (Cheek
Raising) in videos captured from infant-mother live face-
to-face communications. The AU12 and AU6 are the most
challenging case of infant’s expressions (e.g., low facial tex-
ture in infant’s face). One of the problems in facial image
analysis is the large dimensionality of the visual data. Our
approach for solving this problem is to utilize the spectral
regression technique to project high dimensionality facial
images into a low dimensionality space. Represented facial
images in the low dimensional space are utilized to train
Support Vector Machine classifiers to predict the intensity
of action units. Analysis of 18 minutes of captured video of
non-posed facial expressions of several infants and mothers
shows significant agreement between a human FACS coder
and our approach, which makes it an efficient approach for
automated measurement of the intensity of non-posed facial
action units.

1. Introduction

Human face-to-face communication plays an important
role in behavioral science and developmental psychology
[27]. Facial expressions are the most important visual chan-
nels used by humans in face-to-face communication. Effi-
cient measurement of facial expression is necessary to un-
derstand the functionality of face-to-face communication.
The most comprehensive measurement approach to quan-
tify facial expressions of partners (e.g., mother and in-
fant) in a face-to-face communication, is manual coding of
Action Units based on the Facial Action Coding System
(FACS) [11, 22]. FACS provides a description of all pos-
sible and visually detectable facial variations in terms of 44
Action Units (AUs). Usually, a trained human FACS coder
identifies the occurrence of an action unit and codes its in-
tensity in a given facial image. Although the FACS coding
is a precise tool for studying facial expressions, it is labor in-
tensive. Therefore, automating the FACS coding and mea-
suring the intensity of AUs would make it easier and widely
accessible as a research tool in behavioral science.

Automated recognition of facial expressions and action
units has caught the attention of many researcher in the field
of computer vision since the early 1980s. Most of the stud-
ies on automated expression analysis focus on classification
of basic expressions (i.e., joy, fear, sadness, disgust, sur-
prise, and anger) [27]. The utilized image analysis tech-
niques include holistic analysis, spatio-temporal analysis
and analytic spatial analysis. We refer our reader to [27]
for more details on these techniques. More recent systems
[17, 2, 9, 18] have achieved some success in the more diffi-
cult task of recognizing facial action units.

In a real face-to-face communication, we deal with non-
posed facial expressions. Posed facial expressions and ac-
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tion units are those that are created by asking subjects to
deliberately make specific facial actions or expressions. On
the other hand, non-posed facial expressions and action
units are representative of facial expressions in daily life.
They typically occur in uncontrolled conditions and are
combined with head pose variation, head movement and
often more complex facial action units. Non-posed AUs
have intensities measurable from absent to maximal appear-
ance using a six-point intensity metric (i.e., 0 to 5). Most of
the developed systems for facial expression and action unit
classification are evaluated using posed expressions data
(e.g., Cohn-Kanade face expression database [16]).

Recently, Bartlett et al. [2] attempted to measure the in-
tensity of action units in posed and non-posed facial expres-
sions. Their system is based on Gabor wavelet and support
vector machines. Gabor wavelets are 2-D sine waves mod-
ulated by a Gaussian envelope in different spatial scales and
orientation and are applied to features describing local ap-
pearance of the face. Suites of extracted Gabor features are
utilized to train support vector machines (SVMs) classify-
ing the action units. They have reported average correla-
tion values of .3 and .63 between a human coder and the
predicted intensity of action units of non-posed and posed
expressions, respectively. The correlation value is moderate
and statistically significant for posed expressions, but low
and insignificant for non-posed expressions. This means
that measuring the intensity of non-posed expressions is
more challenging than measuring the intensity of posed ex-
pressions.

Most recently, Lucy et al. [18] studied the effective rep-
resentation of face for detection of non-posed action units.
They have investigated the employment of the Active Ap-
pearance Model (AAM) [10, 19] to derive an effective fa-
cial representation. They evaluated the effectiveness of this
representation using the RU-FACS spontaneous expression
database [1]. They attempted to detect the existence of ac-
tion units, however, a measure of intensity was not per-
formed. Presently, there has been no significant work in
measuring the intensity of non-posed action units.

In [23] Reilly et al. presented their effort in capturing the
dynamic of facial expression by describing its intensity and
timing of formation. Their system uses the Local Linear
Embedding (LLE) technique to reduce the dimensionality
of the facial images and employs SVMs to classify combi-
nation of action units and facial expressions. Compared to
our work, they manually extract 24 facial landmarks on the
mouth and use only shape information for capturing the dy-
namics of facial expressions. A study by Lucy et al. [18]
reveals that shape information is not sufficient for modeling
the dynamics of facial expressions and the combination of
appearance and shape is the most successful representation
for action unit recognition. Also, posed facial expressions
data (Cohn-Kanade database) was used by Reilly et al. to

evaluate their system.
The focus of this paper is to develop a framework to

measure the intensity of action units from absent to max-
imal (i.e., 0-5 metric) in non-posed facial expressions. In
our approach, we track and represent facial images in cap-
tured videos using AAM. AAM consists of a shape com-
ponent and an appearance component that jointly represent
the shape and texture variability seen in the object. Al-
though, the appearance component in conjunction with the
shape component is a useful representation for facial ex-
pression analysis, it has extremely large dimensionality. For
instance, a facial image with a size of 128 × 128 pixels
has a dimensionality of 16,384 in the image space. De-
spite the huge dimensionality of the visual data, activities
such as facial expressions have low dimensions embedded
in a large dimensional space [12]. Traditional techniques
such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis have limited ability of reducing the
dimensionality of complex nonlinear facial expression data.
Recently, several nonlinear data reduction techniques such
as Isomap [26], Locally Linear Embedding [24], and Lapla-
cian Eigenmap [21] have been presented for dimensional-
ity reduction. Laplacian Eigenmap and its variants such as
Laplacianface [14] and Orthogonal Locally Linear Embed-
ding [6] have shown promising results in face recognition
[14] and age estimation [13] from facial images. We are
inspired by [7] and adopt the spectral regression technique
to learn projection functions that map AAM representations
into separate sub-spaces called action unit sub-spaces. Re-
duced feature points presented in separate sub-spaces are
employed to measure the intensity of an individual action
unit based on Support Vector Machine (SVM) classifiers.

The remainder of this paper is organized as follows. A
face representation based on the Active Appearance Model
is introduced in Section 2. Section 3 develops our approach
to data dimensionality reduction. Section 4 reviews the
SVM classifiers employed for predicting the intensity of ac-
tion units. Section 5 shows the experimental results and
conclusions. Future work is discussed in Section 6.

2. Face Representation: Active Appearance
Model

Determining an adequate facial image representation for
effectively measuring the intensity of facial expressions and
action units is a challenging problem. A most recent study
by Lucy et al. [18] reveals that AAM [10, 19] is a successful
facial representation technique for action unit recognition.
In this section, we review the AAM and describe the AAM-
based facial representation exploited in this work.

AAM is a statistical representation of an object (e.g.,
face) introduced by Cootes et al. [10] and improved by oth-
ers [19] over the past few years. AAM consists of a shape
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Figure 1. (a) A sample facial image along with the AAM com-
ponents (b) normalized-appearance face image and (c) normalized
shape data.

component, s, and an appearance component, g, that jointly
represent the shape and texture variability seen in the object.
The shape component represents a target structure by a pa-
rameterized statistical shape model obtained from training.
The shape model is defined by a linear model:

s = s0 +
m∑

i=1

p
(s)
i si (1)

where s0 is the mean shape vector, si is a set of orthog-
onal modes (i.e., eigenvectors) of shape variation calcu-
lated by applying PCA on the covariance matrix of the
training shape data, and p(s) = [p(s)

1 , ..., p
(s)
m ]T is a vec-

tor of shape parameters. The appearance statistical model
is built by warping each image instance so that its control
points match the mean shape using the thin-plate spline al-
gorithm [4]. Then, the intensity variation is sampled from
the shape-normalized image over the region covered by the
mean shape. Similarly, by applying PCA to the appearance
data a linear model is defined:

g = g0 +
m∑

i=1

p
(g)
i gi (2)

where g0 is the mean normalized grey-level vector, gi is
a set of orthogonal modes (i.g., eigenvectors) of intensity
variation and p(g) = [p(g)

1 , ..., p
(g)
m ]T is a set of grey-level

parameters. This generates shape data on facial landmarks
and appearance data on the gray-level intensity of each pixel
in the face model. Figure 1 illustrates a sample facial image
decomposed into the shape-normalized appearance compo-
nent and the shape component where consists of 66 facial
landmark points.

The concatenation of the shape-normalized appearance
and the shape component, [g, s], in the form of a vector
is shown to be an effective representation for facial anal-
ysis [18]. Due to the variations in subject facial appearance,
we normalize each concatenated feature vector by subtract-
ing from a neutral feature vector obtained from the subject:
Xnormalized = Xexpression −Xneutral. The Xnormalized

feature vector, which is known as delta feature, decreases
the biasing effect of subject variation on action unit mea-
surement. This representation is employed to measure the

intensity of facial action units. However, due to the curse
of dimensionality of delta features (i.e., 10,132 dimensions,
corresponding to an 100×100 image pixels and 132 coordi-
nate values of 66 facial landmark points), the classification
of action unit intensity is difficult. Therefore, reducing the
dimensionality of the visual data becomes vital and is ad-
dressed in the following section.

3. Action Unit Sub-Space Learning

The problem of dimensionality reduction arises in the
areas of computer vision, artificial intelligence and data
mining. Traditionally, linear techniques such as PCA and
LDA are utilized to project a feature vector from a high
dimensional space, RD, into a low dimensional space, Rd

(d << D) [28]. Linear techniques have limited ability to
represent complex nonlinear data such as facial expressions
in a low dimensional sub-space. Recently, developed non-
linear dimensionality reduction techniques such as Isomap
[26], Laplacian Eigenmap [21], and Locally Linear Embed-
ding [24] have shown success in reducing the dimension-
ality of complex data. These techniques are also known
as manifold learning methods since they assume that the
original feature data lies on a low dimensional manifold
embedded in a high dimensional space. These techniques
are computationally efficient and have locality-preserving
properties.

Laplacian Eigenmap and its variants (e.g., Orthogonal
Locally Linear Embedding [6]) have been successfully used
in face identification [14] and face aging recognition [13].
In this paper, we employ the Laplacian Eigenmap followed
by the spectral regression technique [7] to project facial im-
ages (i.e., the appearance and shape features) into action
unit sub-spaces by learning separate projection matrices. In
the following, we review the locality preserving indexing
(LPI) technique [5] and then present the regularized LPI via
spectral regression.

3.1. Locality Preserving Indexing

Given a set of k points x1, ..., xk in RD, we want to find
a set of points y1, ..., yk in Rd (d << D) such that yi corre-
sponds to xi. In other words, we look for a mapping func-
tion, a such that: yi = aT xi. Given a similarity matrix
W describing the closeness of the points in space RD, the
mapping is obtained by solving the following optimization
problem:

a = arg min
aT XDXT a=1

k∑

i=1

k∑

j=1

(aT xi − aT xj)2Wij

= arg min
aT XDXT a=1

aT XLXT a (3)



where D is a diagonal matrix whose elements are column
sums of W (Dii =

∑
j Wij) and L = D−W is the Lapla-

cian graph. The constraint aT XDXT a = 1 effectively
fixes a scaling factor of the solution.

The similarity matrix W is constructed by finding the
k nearest neighbor points using the Euclidean norm in RD

and weights are assigned as follows: Wij = 1 if two points
xi and xj are neighbors and Wij = 0, otherwise. Alter-
natively, weights can be assigned by using the heat kernel,
Wij = exp− ||xi−xj ||2

t [21]. The weight assignment can
also be supervised if we know the class that these points be-
long to. Therefore, if two points belong to different classes,
the assigned weight is zero, otherwise the weight is calcu-
lated as described above. The supervised method is used to
calculate W in this paper.

The objective function 3 incurs a heavy penalty if neigh-
boring points xi and xj are mapped far apart in the low di-
mensional space. This ensures that if two points are close in
the RD space, then they are also close in the Rd space. By
using the Lagrangian multiplier technique, the optimization
problem 3 can be solved by computing eigenvalues, λ, and
eigenvectors for the generalized eigen-problem:

XLXT a = λ XDXT a. (4)

The eigenvectors associated with the smallest eigenvalues
construct vector a.

To obtain a stable solution of the eigen-problem 4, the
matrix XDXT needs to be non-singular. However, the
number of features (i.e., Xnormalized) are much larger than
the number of sample facial images under study and this
makes XDXT singular. One potential solution is to use
Singular Value Decomposition to solve this problem [5],
but it is computationally very expensive. An alternative ap-
proach for finding the projection matrix a, is to use the fol-
lowing two-step method called regularized LPI via spectral
regression [7]

3.2. Regularized Locality Preserving Indexing:
Spectral Regression

The problem with LPI technique is its high computa-
tional complexity and therefore cannot be applied to large
dimensional visual data. Recently, Cai et al. [7] presented
the regularized locality preservation algorithm which has
shown success in representing large dimensional data in
a low dimensional space. Similar to LPI, the regularized
locality preserving algorithm wants to find the mapping
function a that maps a set of points X = [x1, x2, ..., xk]
represented in a high dimensional space, to points Y =
[y1, y2, ..., yk] in a low dimensional space (yi = aT xi).
This approach is computationally efficient and is described
as follows:

1. Find Y by solving the following optimization problem:

Y = arg min
Y DY T =1

k∑

i=1

k∑

j=1

(yi − yj)2Wij

= arg min
Y DY T =1

Y LY T (5)

where W is the weight matrix described in the previ-
ous section. This optimization problem which is also
known as Laplacian Eigenmap [21] can be solved ef-
ficiently by calculating the eigenvectors of the gener-
alized eigen-problem LY = λDY . Matrix Y LY T is
not a singular matrix [3].

2. Find a such that Y = aT X by solving a regularized
least squares problem:

a = arg min
a

{
k∑

i=1

(aT xi − yi)2 + α||a||2} (6)

The regularization term guarantees that the least
squares problem is well-posed and has a unique so-
lution.

This technique is called spectral regression since it per-
forms spectral analysis on the Laplacian graph [3] followed
by least square regression. We use this approach to learn
separate projection matrices a, to represent each facial im-
age in low dimensional action unit sub-spaces. Since the
supervised method is used to calculate the similarity matrix
W , we solve separate optimization problems for obtaining
aAU12 and aAU6

4. Measuring the Intensity of Facial Action
Units

After the projection of Xnormalized features into action
unit sub-spaces, the problem is to measure the intensity of
action units described in six levels from these features. This
is a multi-label classification problem and we employ SVM
classifiers to solve this problem. The SVMs have been used
in the field of machine learning and pattern recognition, and
has shown success in recognition of facial expressions and
action units [18, 17]. We refer our reader to [29] for techni-
cal details on SVM classification.

Kernel functions are usually employed to efficiently map
input data which may not be linearly separable to a fea-
ture space where linear methods can then be applied. Based
on the kernel mapping approach, every inner product is re-
placed by a nonlinear kernel function kernel K(x, y) =
φ(x).φ(y) where x and y are two input data sets. There
are different types of kernel mappings such as the polyno-
mial kernel and the Radial Basis Function (RBF) kernel.



SVMs using kernel functions demonstrate good classifica-
tion accuracy even when only a modest amount of training
data is available, making them particularly suitable for a dy-
namic, interactive approach to expression recognition. Our
experiments show that the RBF kernel has the highest per-
formance in classifying the intensity of action units. Since
SVM is a binary classifier, the ”one-against-one” technique
[15] is used to extend the binary SVM classifier into a multi-
label classifier. The LibSVM library is employed in this
work [8].

5. Experiments and Results
Parent-infant communication is a topic of considerable

interest in developmental psychology. Much of this com-
munication occurs during the exchange of expressions of
positive affect. Positive affect can be parsimoniously in-
dexed by the intensity of infant smiling (AU12, Lip Cor-
ner Puller) and co-occurring Cheek Raising and Lid Com-
pression (AU6) [20]. They are the most challenging cases
of infant’s expression (e.g., low facial texture in infant’s
face). Our ability to accurately measure intensity variations
in these actions provides a framework for measuring early
human communication dynamics. This framework can be
easily extended to other FACS AUs in infants and adults.

In our study, videos were recorded (at 30 fps) of facial
expressions of four 6-month infants and two mothers dur-
ing a face-to-face interaction. The infants were engaged by
their mothers in order to incite emotional expression from
the infants. Video of the facial expressions was captured
for a three minute interval. There was no condition placed
on subject’s head movement. All of the captured frames
were used in our experiment except for those where the
face was occluded by the subject’s hand or foot or where
the eyes of the subjects were not visible due to severe head
pose.Overall, 24,680 frames were used in our experiments.

A certified FACS/BabyFACS coder manually reliably
coded the presence and intensity of AU12 and AU6 (i.e.,
0 represents absence and 1-5 represent intensity) occurring
in all video frames; these codes were employed for training
and testing of our system. The facial videos were tracked
and modeled using the AAM algorithm provided by [19]
and the delta features were extracted for every video frame
of all four infants. The Xnormalized features of every 15th

frame were used to learn the projection matrix a based on
spectral regression for the AU12 sub-space and the AU6
sub-space.

Our experiments are based on Leave-One-Subject-Out
(LOSO) cross validation to predict the intensity of action
units. SVM training was performed on every mth,m =
2, 5, 7, 10, 12, 15, 20, 25, 30, 50 frame of video excluding
one subject. Testing was performed on the left out subject.
This scenario was repeated for all other subjects.

In order to compare the predicted and manually coded

intensities of action units, we calculate Intra-Class Corre-
lation (ICC). ICC ranges from 0 to 1 and is a measure of
correlation or conformity for a data set when it has multi-
ple targets [25]. In other words, ICC measures the reliabil-
ity studies in which n targets of data are rated by k judges
(i.e., in this paper k = 2 and n = 6). ICC is similar to
Pearson correlation and is preferred when computing con-
sistency between judges or measurement devices.

The ICC in is defined as:

ICC =
(BMS − EMS)

(BMS + (k − 1) ∗ EMS)
(7)

where BMS is the between-targets mean squares and
EMS is the residual mean squares defined by Analysis Of
Variance (ANOVA). That is, the ICC indicates the propor-
tion of total variance due to differences between targets. See
[25] for additional details.

Table 1 shows the ICC coefficient1 between the actual
and predicted intensity of AU6 and AU12 using the SVM
classifiers calculated for four infants and two mothers under
study (the results of this table is based on m = 5). As the
table demonstrates, our approach has high performance on
measuring the intensity of AU6 and AU12 (ICC = .81 and
.84, respectively). The number of frames with AU events is
presented in Table 2.

Figure 2 shows the effect that the number of training
frames has on the accuracy of the system when classifying
the intensity of action units. As the figure illustrates, even
by using a small training set (2% of the frames, m = 50),
the system has a high agreement with the human coder (the
overall ICC = .79 ). In another experiment, we used the
PCA technique (i.e., Eigenface) instead of spectral regres-
sion for data dimensionality reduction. We utilized 100
Eigenfaces (capturing 95% of the total variance) obtained
from the same dataset used for training the spectral regres-
sion. The overall ICC in measuring the intensity of AU6
and AU12 based on PCA and SVM is .61 (5% of the frames
used for training the SVMs). Compared to the results ob-
tained using the spectral regression for data dimensional-
ity reduction (i.e., .81 and .84), the nonlinear spectral re-
gression technique shows better results than the linear PCA
technique.

6. Conclusions and Future work
In this paper, we presented a framework for measuring

the intensity of non-posed facial action units in facial im-
ages. We utilized the idea of Regularized Locality Preser-
vation via spectral regression to reduce the dimensionality
of facial images modeled by AAM. Our approach was em-
ployed to measure the intensity of AU12 and AU6 in facial

1For comparison, the overall Pearson correlation coefficients are .82
and .85 for AU6 and AU12, respectively.



Intra-Class Correlation Number of Frames
Sub. AU6 AU12

Infant 1 .83 .90 4968
Infant 2 .87 .93 4385
Infant 3 .92 .80 3706
Infant 4 .76 .85 2268

Mother 1 .78 .83 4968
Mother 2 .7 .65 4385
Overall .81 .84 24,680

Table 1. Intra-Class Correlation coefficient between the actual and
predicted intensity of AU6 and AU12 calculated for the four in-
fants and two mothers; 20% of data (m = 5) used to train the
SVM classifier.

Intensity AU6 AU12
0 4405 5262
1 5988 5281
2 5378 4536
3 4338 4528
4 3485 3932
5 1086 1141

Overall 24,680 24,680
Table 2. Number of frames with AU events processed in this study.
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Figure 2. ICC coefficient versus percentage of data used in training
the SVM classifiers.

expressions of infants in a live face-to-face communication.
The statistical agreement (i.e., the ICC coefficient) between
a human FACS coder and our system in quantifying the in-
tensity of non-posed action unit are significantly high.

We will utilize our framework to measure the intensity
of other FACS action units related to negative facial ex-
pressions. A major problem in measuring the intensity of
non-posed action units is head movement. We plan to de-
compose the facial variations into separate factors such as
head movement and facial expression and only use the fa-

cial expression factor in quantifying the facial action units.
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